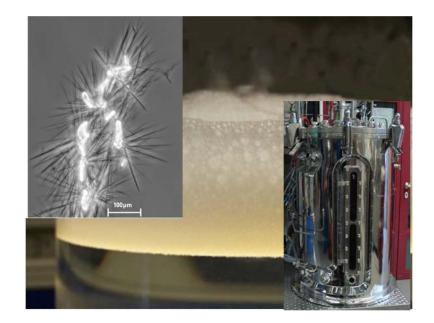
Novel Production Strategies for Biosurfactants

Project acronym: BioSurf. Project no: EIB.10.039



Project aim

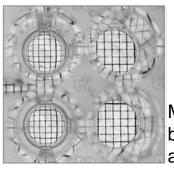
Surfactants form an integral part of our everyday life with applications from food to fuel additives

BioSurf aims at an increased replacement of petro-based surfactants by biosurfactants generated from renewable resources

Overview of the WPs

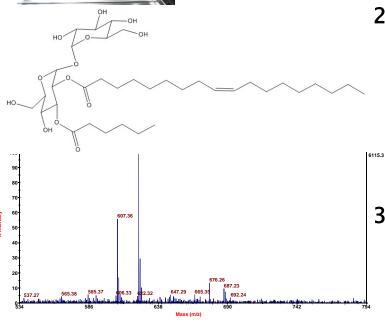
BioSurf: Novel Production Strategies for Biosurfactants

LISBP TORMANS


WP2	WP 3	WP 4	WP 5	WP 6	WP 7
Identifi- cation and preparation of new surfactants	Enzymatic synthesis and modification	Product characte- rization and selection	Metabolic engineering Improved strains for application	Bioprocess engineering and downstream processing	Dissemina- tion and Exploitation
	c·LEcta 🗾	ECOVER POWERED BY NATURE	Fraunhofer	VILO Vision on technology	ECOVER POWERED BY NATURE

WP2: Identification and preparation of new surfactants

- Development of modified or unexplored biosurfactants
- Identification of novel biosurfactants by screening of strain collections
- Characterisation of microorganisms and the produced biosurfactants



Microplate assay based on surface activity of BS

WP2: Identification and preparation of new surfactants

1. Screening for new surfactant producers:

- Establishment of high throughput screening methods
- Isolation and screening of 377 microorganims (e.g. peat-bog soil, intestines of seawater animals, mediterranean sponges)
- Identification of not yet described non-pathogenic biosurfactant producers (Rahnella sp., Citrobacter braaki, Serratia fonticola, Pseudomonas extremaustralis and several *Psychrobacter sp.*).

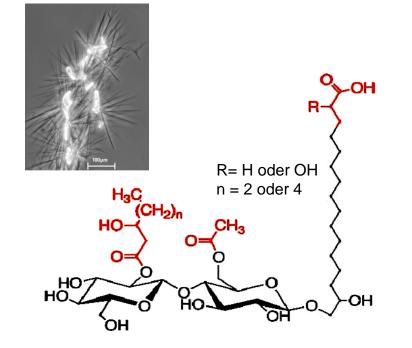
2. Production and purification

- Fermentation (L scale) of novel Trehalose-lipids from Tsukamurella spumae and T. pseudospumae
- Production of unknown surfactants (584 and
- 600Da) from *Rahnella sp.* 323 (1,2 L scale)

3. Characterization and structure elucidation

 Isolation by liquid chromatography structure elucidation using MALDI-ToF-MS-MS and NMR

Johannes Kuegler


WP2: Modified biosurfactants

cellobiose lipid (CL)

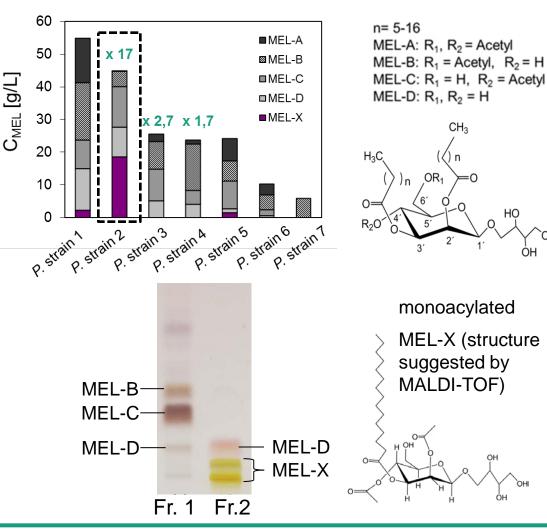
- antibiotic properties
- needle like crystals in acidic conditions

mannosylerythritol lipid (MEL)

- strong surface activity,
- good applicability as emulgators
- secreted as oily, viscous substance

Ca. 80 different variants

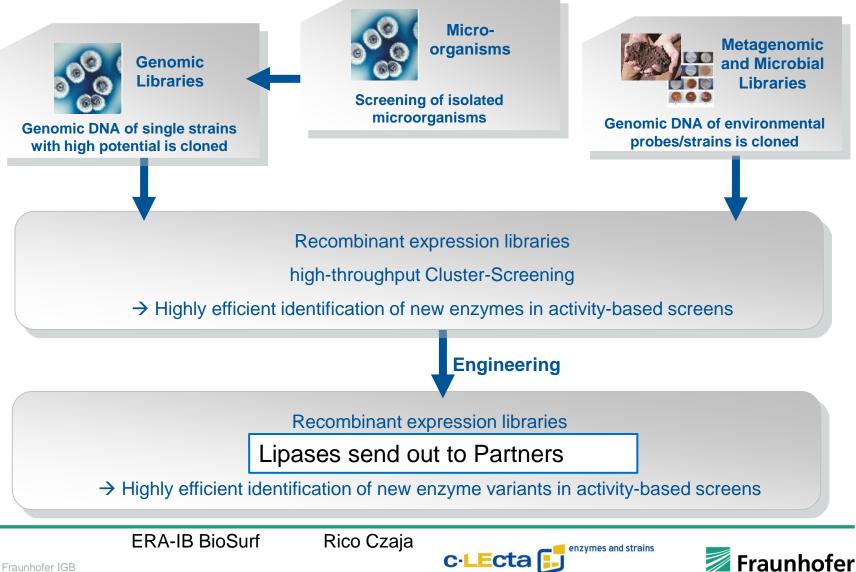
red = variable side groups


 $R_{3}=C2-C18 \text{ fatty acid residue}$ $R_{4}= acetyl- oder H$ $R_{6}= acetyl- oder H$ X = 0-16 $R_{6} O CH_{2}(CH_{2})_{x}CH$ $R_{4} O O H$ O H

> 240 different variants

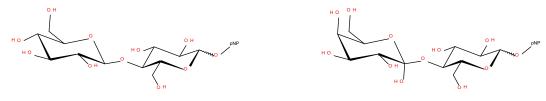
WP2: Production of rare hydrophilic MEL-structures

- Comparison of 7 *Pseudozyma* strains
- → 5 produce abundant amounts of MEL-B, MEL-C MEL-D and with MEL-X greater hydrophilicity
- P. strain 2 produces a 17-fold higher MEL-yield, compared to literature (2-fractions)
- 1. MEL-B,-C,-D-fraction $(20 \pm 5 \text{ g/L})$
- 2. MEL-D, -X-fraction with high water solubility $(25 \pm 5 \text{ g/L})$


WP3: Enzymatic synthesis and modification

- enzymatic modification of natural biosurfactants to enhance surfactant performance
- enzymatic synthesis of novel types of glycolipid-biosurfactants derived from fatty acids, alkanols or terpenes in combination with rare sugars or oligosaccharides

WP3: Screening for new enzymes



IGB

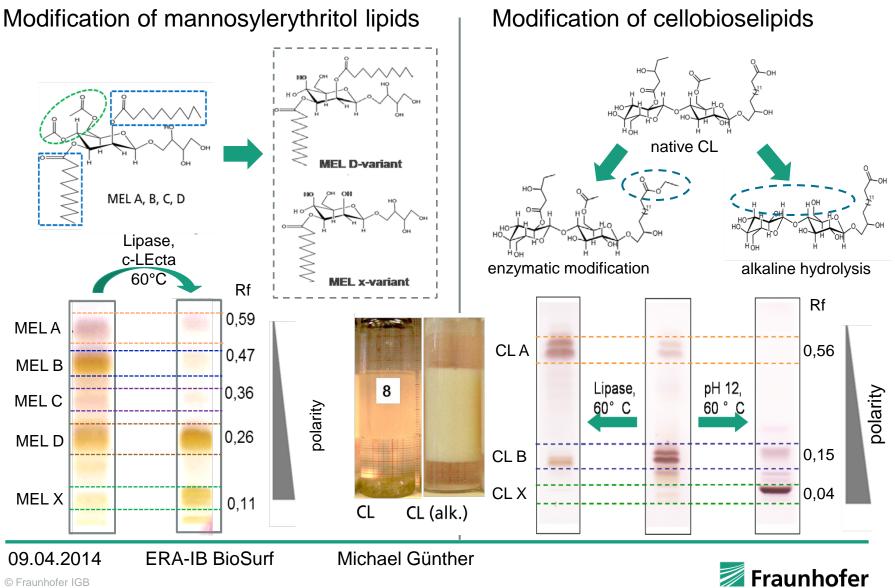
WP3: Enzymatic glycolipid modification

- screening for transglycosidases
- established with pNP-derivatives of cellobiose and lactose and with pNP-derivatives of palmitic acid for lipases

pNP derivative of cellobiose

ERA-IB BioSurf

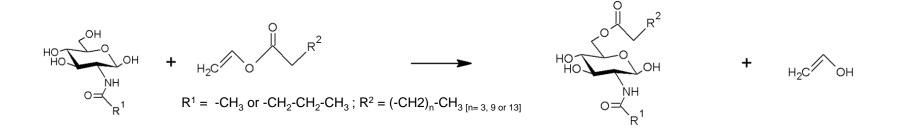
pNP derivative of lactose


- screening of different genomic and metagenomic libraries (altogether 300,000 clones)
- four new glycosidases able to hydrolyze cellobiose- and lactose derivatives
- similarities to known glucosidases, glycosyl-hydrolase and rhamnosidases

Rico Czaja

- identities to known database enzymes between 48% and 96%
- enzymes are available

WP3: Modification of glycolipids from fungi


© Fraunhofer IGB

ERA

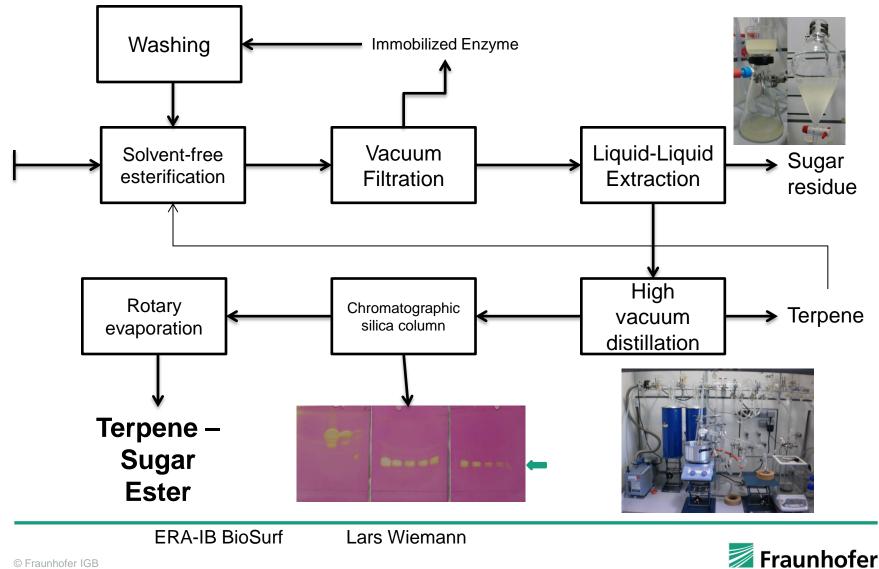
C

WP3: Enzymatic synthesis of novel glycolipids

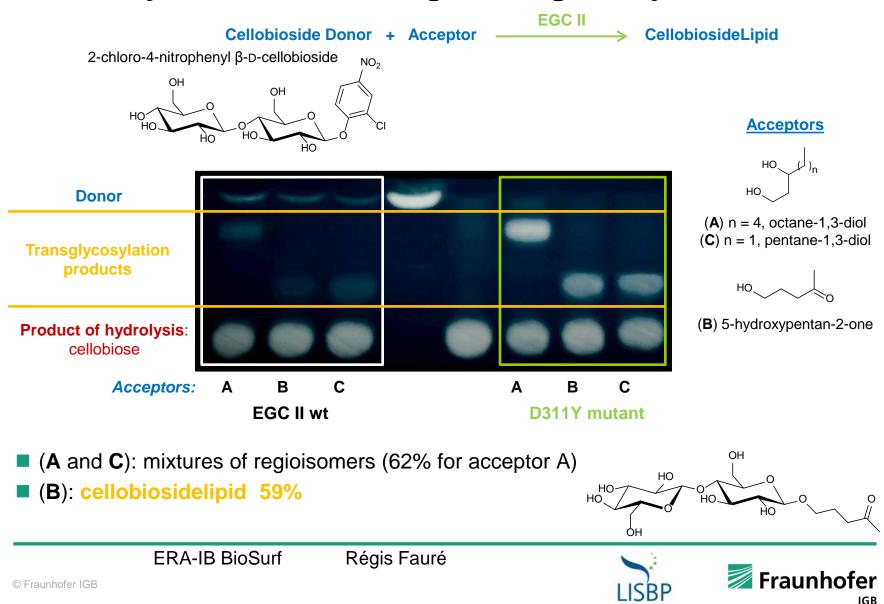
Different amino sugar fatty acid esters synthesized via lipase-catalyzed transesterification

■Experiments carried out for 48h in 2m2b with Novozyme 435[™] at 40°C and 300 rpm

- Structures elucidated via NMR
- Quantification using high performance liquid and gas chromatography
- Purification via MPLC
- Influence on the synthesis of different parameters tested:
 - Substrate solubility
 - Water content
 - Substrate ratio
 - Temperature

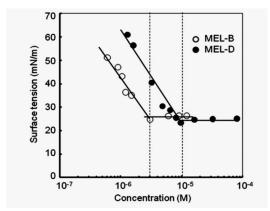


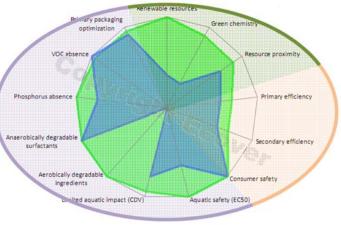
WP3: Enzymatic synthesis of novel terpenoid sugar esters


- Solvent-based and solvent-free process for novel, not yet characterized biosurfactants from terpenes and sugars
- Reaction kinetics determined
- Residual substrate and bio-catalyst recovery possible
- Analytical validation of products
- Promising surfactant properties of products
- Product stability at higher pH critical (hydrolysis)

Solvent-free process

WP3: Glycoceramidase-engineering for Synthesis




WP4: Product characterisation and selection for product development

- Testing of the generated biosurfactants for basic physico-chemical properties
- Testing for antimicrobial properties (AS-HTS)
- Promising surfactants will be produced in 100 g scale for full application tests:

Foam quality, skin compatibility (HET-CAM-Test), dishwashing and laundry performance tests

Ecotoxicity and biodegradability of the new products

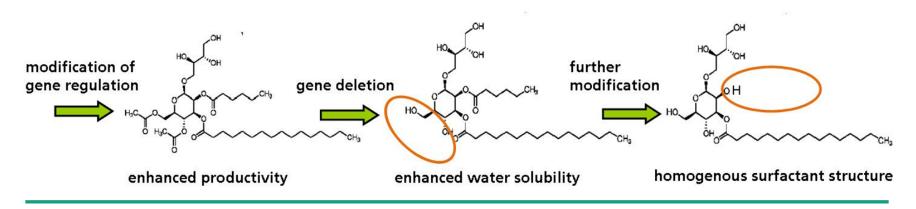
WP4: Application tests performed

	CGE batch 1	GGE batch 1	MGE batch 1	CGE batch 2	MEL purified	CBL native	CBL hydrolysed
	Terpenol 1	Terpenol 2	Terpenol 3	Terpenol 4	Mannosylerythrit ol lipid	Cellobiose lipid	Cellobiose lipid
Solubility in water	pH adjustments needed	Water soluble, but unstable after one night at 4°C	Neutral pH	10000ppm	pH adjusted (pH=11), 5 days at 40°C	pH adjusted, 5 days at 60°C	Addition of hydrotrope (influences succeding measurements)
Min. surface tension measured [mN/m]	27	26	31	37	29	40	
Min. contact angle measured [°]	49	30	59	58	27		
CMC [ppm = mg/kg]	2000	2000	>10000	>10000	100	1500	
Foam					No foam	No foam	
Remarks					Slow		

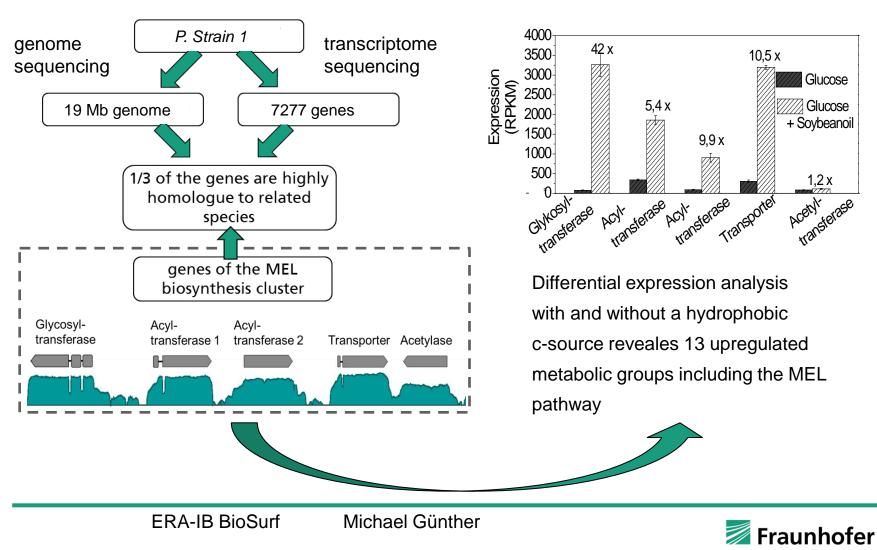
	Partial hydrolysed SL	Complete hydrolysed SL	
Solubility in water	Yes	Yes	
Surface tension at CMC	38 mN/m	31 mN/m	
Contact angle at CMC	39°	35°	
Foam	Foam, but low capability and stability	No foam with soft or hard water	

ERA-IB BioSurf

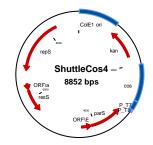
Elke Theeuwes



WP5: Metabolic engineering:


Improved strains and surfactants for industrial application

- Identification of biosurfactant pathways
- Identification of regulatory mechanisms
- Engineering of biosynthetic pathways to obtain higher production yields and taylor surfactant structures


WP5: Investigation of the MEL-metabolism in *P. strain1* on genome and transcriptome level

WP5: Novel biosurfactant operons: Large insert libraries

- building of of a new shuttle cosmid
 - screenings in *E. coli* and *Bacillus* sp. possible
- protocols for high efficient transformation of cosmid libraries in screening host *B. subtilis* (surfactin-deficient) established
- Control library from *B. subtilis* (surfactin producer) built
- surfactin production of B. subtilis DSM was confirmed by emulsification tests
- screening was performed in DWP with MTP assay, Anthracene solubility assay and Methylene blue assay
- no biosurfactant positive hits were found

enzymes and strains

WP6: Bioprocess Engineering and DSP

- Scale Up/Batchwise DSP
- Membrane design for In Situ Product Recovery and set up of an integrated process

WP6: Downstream processing of MEL and CL

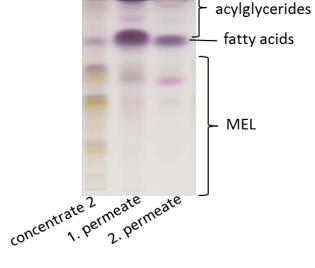
Biosurfactant	Purity	Consistency
Mannosylerythritol Lipid (MEL)	60-80 %	Viscous Fluid
Cellobiose Lipid (CL)	60-80 %	Powder

- Recovery and concentration of the samples
- Obtain a purity >> 90 %

- Procedures
 - Precipitation of the biosurfactants
 - (→ not suitable, poor quality of the product)
 - Extraction with Supercritical CO₂
 - Membrane filtration

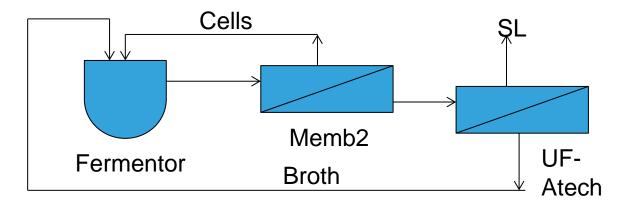
variation of membranes, solvents and ratios of the mixture

biosurfactant / solvent

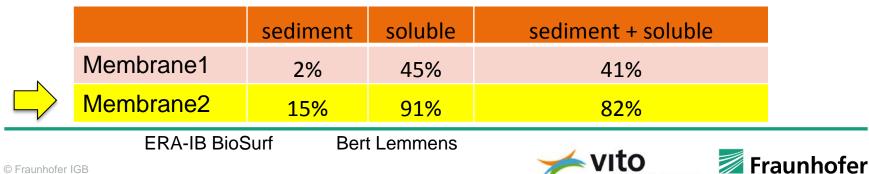


DSP of MEL and CL: Membrane filtration

- Membrane filtration of MEL (63 % → 90 % purity)
 - Suitable membrane, solvent and sample mixture for MEL indentified
 - → two step filtration leads to 90 % purity


- Membrane filtration of CL (46 % \rightarrow 90-100 % purity)
 - ➔ highly selective separation

	Concentrate	Permeate		
Membrane 1 + Ethylacetate				
% CL		0		
% other lipids	13	100		
Membrane 1 + Hexane				
% CL		0		
% other lipids	0	100		



WP6: SL yield after membrane purification (ISPR)

		sediment	soluble	sediment + soluble
N	Membrane1	6%	63%	53%
\rightarrow	Membrane2	30%	98%	78%

vision on technology

IGB

WP6: DSP on sophorolipids

In Situ Product Recovery on site:

- Installation of lab stack device at pilot facilities Ecover
- First trial a few months ago
- results limited due to technical difficulties
- Second trial schedueld for end of this month

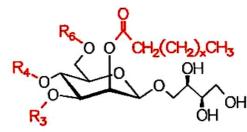
Elke Theeuwes

IGB

WP7: Dissemination and Exploitation

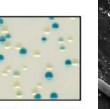
Presentations at workshops/trade fairs

- Forum Industrial Biotechnology @ Biotechnika (11/2011)
- Hannover Messe (4/2012) Exhibition @ Fraunhofer House of Sustainability
- Grüne Woche" Berlin 1/2013 and 1/2014, Exhibition @ Fraunhofer Booth
- First International Workshop on Biosurfactants 16.-17.5.2013 @ DECHEMA, Frankfurt


organized by BioSurf: Christoph Syldatk, Rudolph Hausmann, Steffen Rupp (see http://events.dechema.de/biosurf.html)

Summary

- Production of several modified bio-surfactants (SL, MEL, CL)
- Novel bio-surfactants identified and produced (Trehalose-Lipids, MEL-X)
- Novel bio-surfactants synthesized enzymatically (Terpenols, aminoglycosid lipids, cellobiose lipids)
- Identification of biosynthetic pathways for MEL production and their regulation using NGS
- Application tests and qualification of several novel bio-surfactants and their modifications (still ongoing)
- Novel DSP-Processes for SL, MEL and CL (still ongoing)
- Cost reduction in SL-production by ISPR-process


Identification and preparation



Bioprocess Engineering and DSP

Selection of mutants by digital imaging screening

Thank you for your attention

product development

Dissemination and Exploitation