INTACT – EIB.10.008 INTegral engineering of ACetic acid Tolerance in yeast

Ton van Maris Delft University of Technology Department of Biotechnology Section Industrial Microbiology Delft, the Netherlands

Warsaw, February 26, 2014

... the Team:

Isabel Sa-Correia Nuno Mira Margarida Palma Joana Guerreiro & students

Joaquin Arino Boris Rodriguez

TUDelft

Ton van Maris Dani Gonzalez Ramos Erik de Hulster Bianca e.d. Bianca (Bra) & students

Desired feedstocks for Industrial Biotechnology

3

Acetic acid

Main mode of toxicity

Growth of lab strain (CEN.PK) at various concentrations pH 4.5 defined media

Exposure of exponentially growing cells to acetic acid decreases specific growth rate (μ_{max}) and lag (latency) phase

Consortium Aim

- Understand and rationally improve acetic acid tolerance of *S. cerevisiae*, through integrating:
 - Identification of tolerant natural isolates
 - Genetic mapping and comparative genomics
 - Transcription factor engineering
 - Evolutionary engineering
 - Physiological analysis including ion homeostasis
 - (Reverse) metabolic engineering

S. cerevisiae strains strongly differ in acetic acid tolerance (particularly lag phase)

Swinnen et al., submitted

S. cerevisiae strains strongly differ in acetic acid tolerance (particularly lag phase)

CEN.PK

Ethanol Red

10

Swinnen et al., submitted

S. cerevisiae strains strongly differ in acetic acid tolerance (particularly lag phase)

Swinnen *et al.,* submitted

The major challenge in reverse engineering: How to identify the causative genetic differences?

Acetic acid tolerance is a quantitative trait

Identification of the crucial genetic determinants

Select only segregants with acetic acid⁺ phenotype

Pooled segregant whole genome analysis

Significant genetic association?

Genome-wide genetic association analysis

Transcription Factor Engineering

Screening for growth on Synthetic medium with 0.95% acetic acid (pH 4.5)

18

Transcription factor engineering

1. Error prone PCR

2. Restriction of pRS416-HAA1

Homologous recombination in CEN.PK113-13D and CEN.PK113-13D haa1∆ Selection of plasmid-containing transformants Screening of library for acetic acid tolerance

Transcription factor engineering

1. A mutant HAA1 library has been enriched in acetic acid containing medium

- 2. Several transformants expressing a mutated *HAA1* gene showed an improved acetic acid tolerance (in terms of the duration of the latency phase) as compared to the strain expressing the wild type *HAA1* gene
- 3. Focus on the *HAA1* allele with the lowest number of mutations

• Introduction of the mutations in the genome of CEN.PK113-7D:

Purpose → Eliminate any possible effects of the plasmid and auxotrophic background

 \rightarrow Determine the individual effect of each mutation

Strains

Transcription factor engineering

• Introduction of the mutations in the genome of CEN.PK113-7D:

Screening of the mutant strains for acetic acid tolerance

→ 160 mM – pH 4.5

Tolerance test - VM-HAc 90 mM at 15 hours

strains

The role of the Haa1p regulon in yeast response and resistance to acetic acid stress

Evolutionary Engineering in Sequential Batch Cultivation

- Ability to grow at higher [acetic acid]
- Faster growth at a given [acetic acid]

However, acquired phenotype not constitutive, but hyper inducible

29

Kluyvericentrei

Wright et al. 2011 FEMS Yeast Res. 11: 299-306

Induction of acetic acid tolerance

Evolutionary ON/OFF approach for constitutive tolerance

31

Measurements of acetic acid tolerance

Aim of the study

33

Number of mutations responsible for tolerance? Dominant or recessive?

Sporulation and screening

144 haploid segregants

Inoculate without OD₆₆₀ measurement

Measure OD_{660} after 5 days

An alternative approach to deal with acetic acid?

Can the inhibitor acetic acid be converted (reduced) to ethanol?

- Attractive option (less acetic acid, more ethanol)
- But where should the reducing equivalents come from?

An engineering strategy to eliminate glycerol production

1. Express heterologous acetylating acetaldehyde dehydrogenase

Predicted benefits

- less acetic acid, no glycerol, more ethanol
- 6% higher ethanol yield (industrial conditions)

Strain characterization in Batch

Strain characterization in Batch

13 % increased ethanol yield

Integration and knowledge based engineering of tolerance

Activities Time-table

Please give a diagrammatical representation (block diagram) of the workpackage activities vs. time.

Activity scheme	S1	S2	S3	S4	S5	S6	a summer of the set
WP1 Screening of natural and industrial isolates (Br & L)							completed
WP2 Evolutionary engineering improved acetic acid tolerance (D)							completed
WP3 Identification of relevant genetic loci in tolerant strains (Br & D)							ongoing
WP4 High-copy number screen for genes confering tolerance (Ba)							completed
WP 5 Generation of gTME library & screening transformants (Br&L)							ongoing
WP6 Proteome & Metabolome profiling (L)							completed
WP7 Characterization of Haa1 regulon (L & Ba)							completed
WP8 Characterization of Rim101p regulon (L & Ba)							deprioritized
WP 9 Identification of acetate exporters (L & D)							ongoing
WP10 Potassium homeostasis in relation to tolerance (Ba & L)							ongoing
WP11 Knowledge-based metabolic engineering of tolerance (C)							continued
Ba) Barcelona, (Br) Bremen, (D) Delft, (L) Lisbon (C) Consortium. S in	dicat	es Se	meste	er (ha	lf yeai	r)	collaboration

Conclusions

- Improved understanding on how acetic acid affects processes (single cells, genomics, induction)
- Strains with improved tolerance to acetic acid identified
 → Synthetic biology tools rapidly developed the last 3 years
- Evolutionary engineering can dramatically improve constitutive tolerance to acetic acid.
- Reverse metabolic engineering still ongoing

INTACT – EIB.10.008 Integral Engineering of Acetic Acid Tolerance in yeast

42

