Project title

Development of a process for the utilization both the carbohydrate and the lignin content from lignocellulosic materials of annual plants for the production of valuable products

Project acronym: Products from lignocellulose Project no: EIB.10.013

Project aim

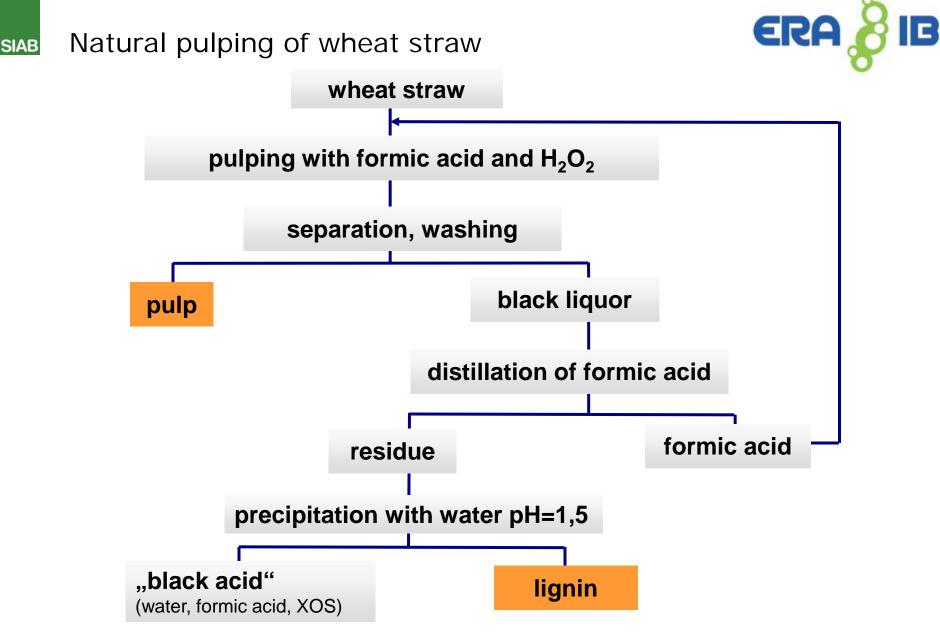
is the development of a process for the material utilization of both the carbohydrate and the lignin content from lignocellulosic materials of annual plants.

General project approach

With this objective, the following main tasks have been studied:

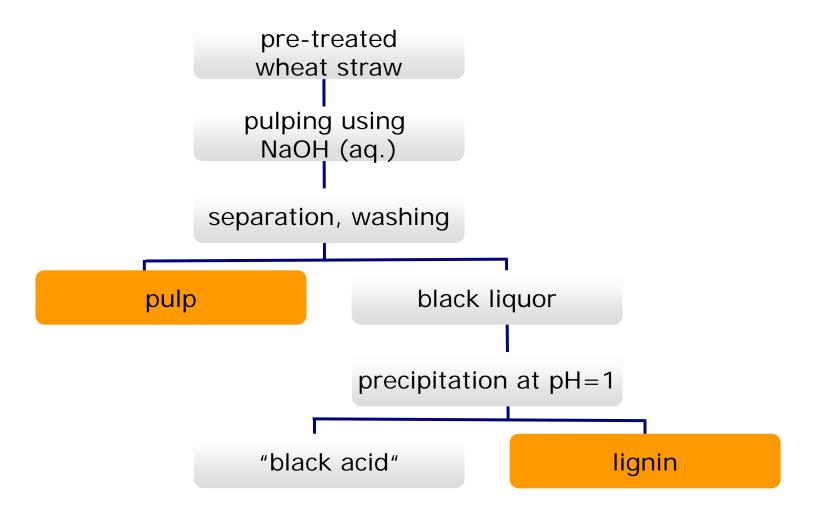
- (i) the development of a pre-treatment process, which allows the separation of both the lignin and the carbohydrate content of lignocellulosic raw materials,
- (ii) the development of a Penicillium vertuculosum enzyme complex optimized for the saccharification of the carbohydrate content of lignocellulose in a Simultaneous Saccharification and Fermentation (SSF) process,
- (iii) **investigations on the SSF-process**, using model yeast strains for the production of ethanol and platform chemicals,
- (iv) the **modification of the separated lignin** for the production of fibrereinforced biopolymers as well as for the production of fine chemicals.

Partner of the Consortium:



(www.era-ib-lignocellulose.eu)

SIAB, UL	SIAB and Leipzig University, Leipzig	
IPWC TECHNISCHE UNIVERSITÄT DRESDEN	Technical University of Dresden	
IWPT TECHNISCHE UNIVERSITÄT DRESDEN		
	Freiberg University of Mining and Technology	
VTT VTT, Technical research centre of Finland		
Laboratório Nacional de Energia e Geologia		
	WUR-FBR, Wageningen, Netherlands	
Biotehnol	Biotehnol, Bucharest, Romania	


Pre-treatment of lignocellulose

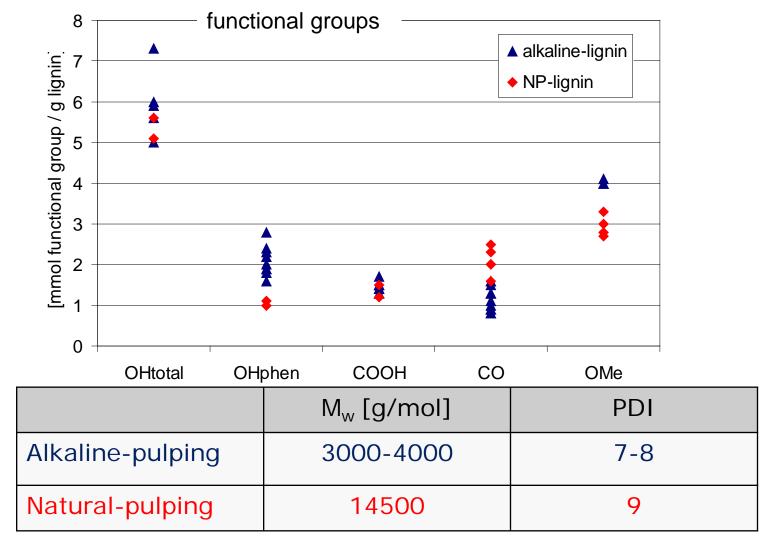
alkaline pulping of wheat straw

Why the investigation of different methods for pre-treatment?

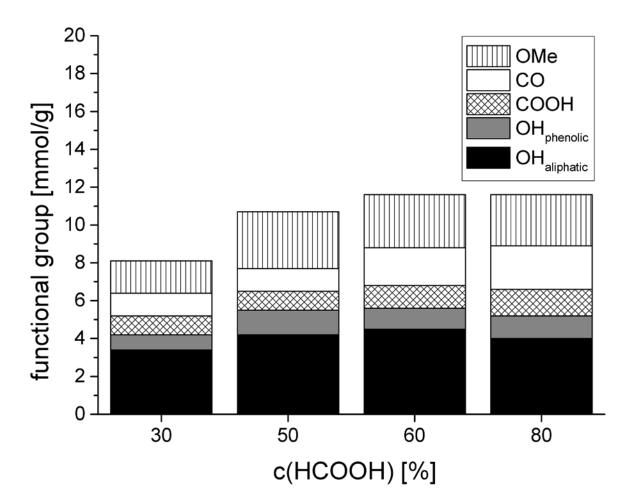
- Investigation on different properties of the lignin depending on the method for pre-treatment
- Investigation on different properties of the pulp depending on the method for pre-treatment

Scale-up of pre-treatment

- Investigation on changes of the lignin-properties and the pulpproperties by scale-up of the pre-treatment process
- Provision of adequate amounts of lignin and pulp for further investigations concerning their material utilization


Influence of pre-treatment on properties of pulp and lignin

Analytic of pulp:	 Intrinsic viscosity Determination of crystallinity by X-ray diffractometry Scanning electron microscopy Composition of pulp; lignin, cellulose and holocellulose content Xylo-oligosaccharides at autohydrolysis
Analytic of lignin:	 Influence of pulping duration / liquid ratio Influence of formic acid concentration (NP) Influence of NaOH-concentr. (alkaline p.) Functional groups IR-spectroscopy Molecular weight Klason lignin


Chemical composition of alkaline and NP-lignin

Influence of formic acid concentration on structure of NP-lignin

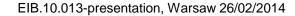
Scale-up of alkaline pre-treatment

(400-L-scale in Fraunhofer Center for Chemical-Biotechnological Processes CBP, Leuna)

1. Charging the digester

- 1. Charging the digester
- 2. Pulping procedure

- 1. Charging the digester
- 2. Pulping procedure
- 3. Separation of pulp



- 1. Charging the digester
- 2. Pulping procedure
- 3. Separation of pulp
- 4. Lignin precipitation

1. Charging the digester

- 2. Pulping procedure
- 3. Separation of pulp
- 4. Lignin precipitation
- 5. Lignin separation

Scale-up of alkaline pre-treatment in CBP Leuna

Scale	Sample	Cellulose [%]	Hemi- cellulose [%]	KLASON- Lignin [%]	In/Output [kg atro]	Yield [%]
)-L	Wheat straw	41,9	31,7	21,7	25	
350-L	Pulp	75,2	18,0	6,5	11,5	46,1
	Lignin	-	-	61,7	10,0	25,0
2-L	Pulp	76,5	12,3	4,3	0,07	55,2
	Lignin	-	-	66,0	0,03	19,3

SIAB

Scale-up of Natural Pulping pre-treatment

600-L Reactor (enameled)

ERA

IB

- Agitation: 1 impeller
- Including distillation-unit

Lab-scale (SIAB)

Pilot-scale

(Lanxess Deutschland GmbH, Group Function Innovation and Technology)

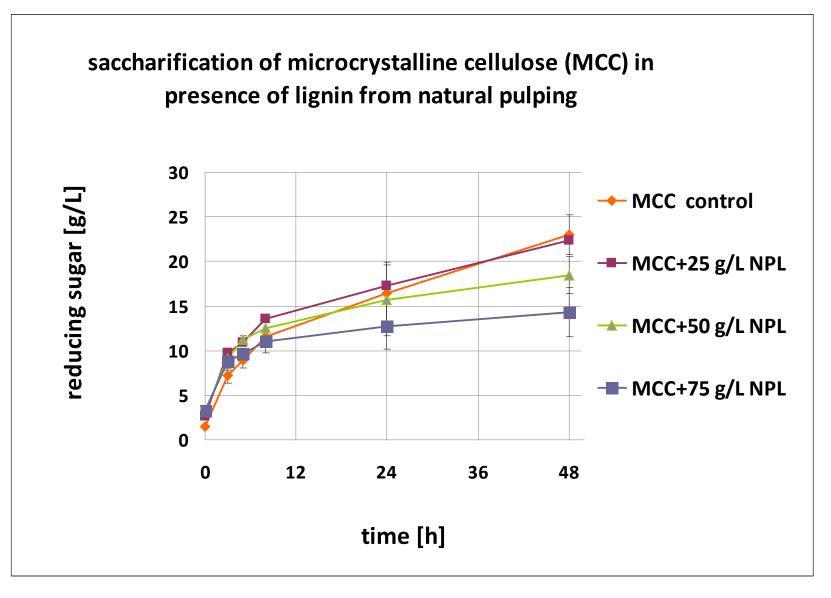
Scale-up of NP process, composition of pulp

Parameter	Lab-scale	Pilot-scale
Vessel	5 L (glass)	600 L (enameled)
Wheat straw (DM)	120g	23 kg
liquid ratio	14:1	14:1
Scale factor		1:200
Yield of pulp	50-55% related to straw-input	51,2% related to straw-input
Content of cellulose	~79%	
Hemicellulose	~10%	(still in process)
Lignin	~14%	

Comparison of all pre-treatments

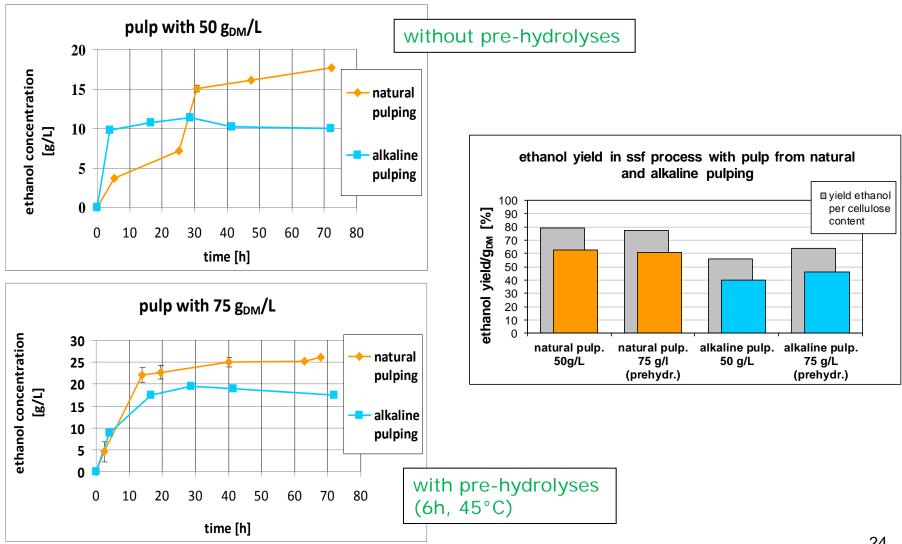
Pre-treatment	Advantage	Disadvantage
Natural Pulping Liquor ratio 1:14	 Recovery of formic acid High purity of lignin Non-pressurised process Pulp has a lower intrinsic viscosity 	 High content of lignin in pulp Low solid content (1:14!) Corrosion protection (e.g. enameled steel)
Alkaline Pulping Liquor ratio 1:6	 Low lignin content in pulp High technological readiness 	 Recovery of sodium hydroxide Pressure of 6 bar
Auto-hydrolysis Liquor ratio 1:8	 No chemicals needed Recovery of hemicellulose 	 High energy consumption Pressure of 20-25 bar
Supercritical extraction EIB.10.013-presentation, Warsaw 2	 Recovery of CO₂ 6/02/2014 	 High energy consumption (pump and cooler) Pressure of 200-300 bar Low carbohydrate yield

Quality of lignin obtainable by the used processes


Lignin	Advantage	Disadvantage
IAT (kraft lignin) 95% lignin	 High content of phenolic hydroxyl groups High Klason-lignin content 	 Contains sulfur
Alkaline pulping, wheat straw 60%–70% lign.	High content of phenolic hydroxyl groupsSulfur-free	 Low Klason-lignin content
Natural pulping, wheat straw 80% lignin	High Klason-lignin contentSulfur-free	 Low content of phenolic hydroxyl groups

Penicillium verruculosum enzyme complex

Study on inhibition of *P. verruculosum* cellulase by NP-lignin



Investigations on the SSF-process

Comparison of SSF between pulp from natural and alkaline pulping

ERA

E

SIAB

SSF-Process in technical scale at CBP Leuna

- 220 L Reactor
 - Agitation: anchor stirrer
 - Medium composition:
 - 100 g/L alkaline pulp,
 - 50 FPU/g Cellulose (DM),
 - 7,5 g/L yeast, + inorganic compounds
- Pre-hydrolysis 45°C
- Fermentation $35^{\circ}C$; pH = 4,5 5,5

Results:

- ➢ EtOH-max: 3,84 Vol.%
- EtOH-yield: 55,3% (related to pulp dry matter)
- EtOH-yield: 73,7% (related to cellulose-content in pulp)

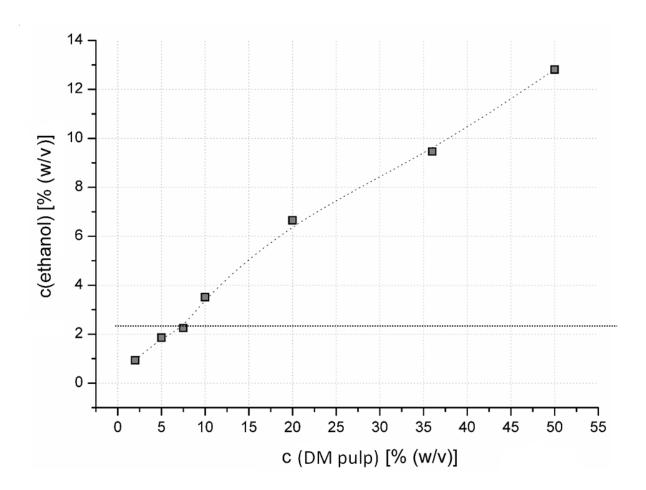
SSF-process

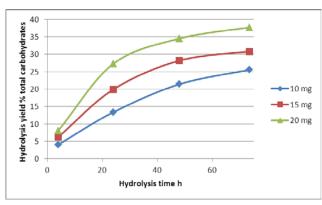
• economical ethanol production:

ethanol conc. >4 %(v/v) required

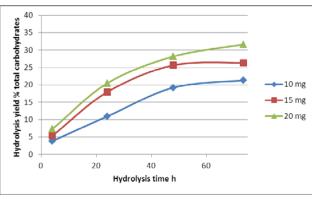
→ >10 %(w/v) solid
concentration necessary

 High viscosity → "free-fall-mixing" required → 15 L solid state bioreactor





SSF-process in solid state reactor


High solid content

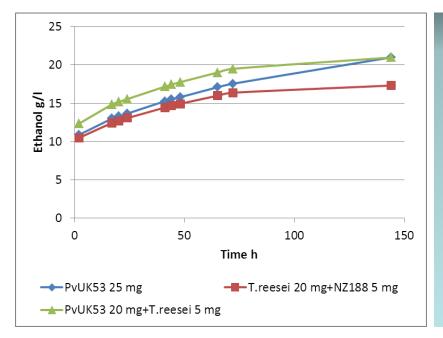
Optimization of the SSF process

Penicillium verruculosum UK53

Trichoderma reesei +Novozym 188 4:1

Comparison of *Penicillium verruculosum* and *Trichoderma reesei* enzyme mixtures in hydrolysis

• Penicillium verruculosum enzyme mixture was more efficient in hydrolysis of NP cellulose than *T. reesei*+Novozym 188 reference at enzyme dosages 10-20 mg/g substrate DM


ERA

- Penicillium verruculosum enzyme mixture has high β-glucosidase activity compared to *T.reesei*, which is seen as more efficient hydrolysis of Avicel-cellulose and hydrothermally pretreated wheat straw in absence of added β-glucosidase
- Partial replacement (at least 20 %) of *P.verruculosum* UK53 with *T. reesei* enzyme mixture slightly improved hydrolysis yield from NP wheat straw (ca 5%)
- No individual enzyme component (EGs, xylanases and β-xylosidases were tested) responsible for improvement could be identified (data not shown)
- Hydrolysis of NP cellulose required relatively high enzyme dosage
- Soluble compounds extracted from NP cellulose were not the cause of inhibition of hydrolysis.

Time-course hydrolysis of NP cellulose (10 % DM) with *Penicillium verruculosum* UK53 and *Trichoderma reesei* supplemented with β-glucosidase from Novozym 188 at different protein loads (10, 15 and 20 mg/g substrate (DM)). T=35°C, pH 5. Released sugars were quantified using PAHBAH assay and glucose standards and HPLC.

Comparison of *Penicillium verruculosum* and *Trichoderma reesei* enzyme mixtures in SSF

- Ethanol yield from NP cellulose was 50.5-63.6 % from theoretical maximum when *P.verruculosum* UK53 enzyme mixture was used, whereas 45.5-51.5% yield was reached with *T. reesei*+Novozym 188 enzyme mixture (prehydrolysis 24 h at 35-45°C, enzyme load 20-25 mg/g substrate DM)
- Similar to hydrolysis results, addition of *T.reesei* enzymes to *P. verruculosum* mixture facilitated ethanol production in fermentation

Comparison of *Penicillium verruculosum* UK53, *P.verruculosum* UK53+*T.reese*i and *T.reesei*+Novozym 188 enzyme preparations in SSF ethanol production from NP cellulose. Conditions: <u>10 % substrate (</u>DM), prehydrolysis at 45°C (24h), SSF at 35°C, pH 5, yeast RedStar 5g/l, enzyme load 25 mg/g substrate.

Results to the SSF-process

Hydrolysis

- Enzyme complex from *P. verruculosum* leads to higher hydrolysis rates in comparison with *T. reesei*
- No or only low inhibition of *P. verruculosum* cellulase by lignin

SSF-Process

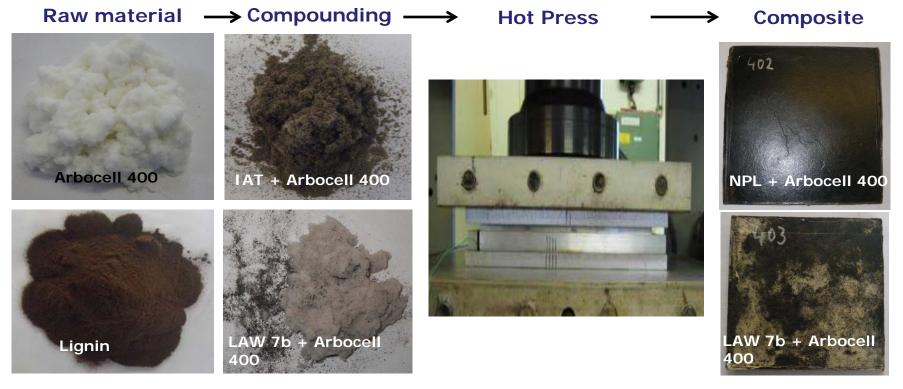
- Pulp from NP process generate more ethanol in SSF process than pulp from alkaline pulping
- Stirred bioreactors (CSTR) allow a maximum of about 7.5 %(w/v) pulp, therefore a partial pre-hydrolyses of pulp or feeding in fed-batch-technique must be performed to realize economic concentrations of ethanol
- Yield ethanol / g NP-cellulose > 75% (laboratory conditions)
- Pre-hydrolyses with *P. verruculosum* cellulase improves particularly strong the SSF-process with pulp from Natural Pulping pre-treatment
- Solid state fermenter: 50 %(w/v) pulp content \rightarrow max. 12.8 %(w/v) ethanol
- The yeast needs to be optimized for the SSF process

Dehydratisation of ethanol

- 100 % conversion of ethanol (results shown in Appendix)
- < 80 %(v/w) ethylene was produced directly from fermentation broth</p>

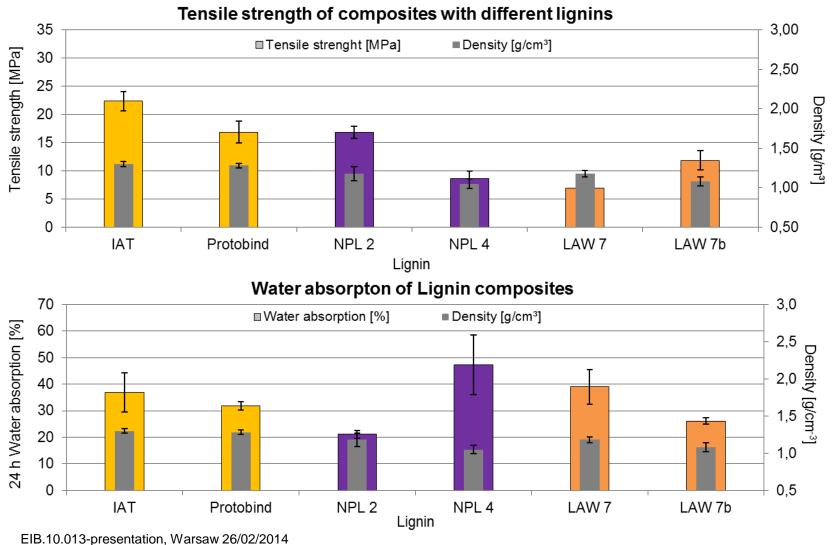
Compounding and press moulding of fibre reinforced composites

Objektives (WP 6)



Production of Lignin-based Bio-Composites

- 1. Examination of lignin processing:
 - Compounding,
 - Press moulding,
 - Moulding temperature,
 - Lignin acetylation (Ghosh et al. 1999),
- 2. Improvement of fibre to lignin bonding:
 - E-beam treatment of lignin and composites,
 - coupling agents,
- 3. Analyses of composite properties
 - Tensile strength, MOE (EN ISO 527-4)
 - 24h Water absorption (EN ISO 62)


Processing of Press moulding

Bulk L/F	: 55% / 45% (40 g (22 g Lignin + 18g fibre)),
Pressure	: 1,1 – 2 N/mm²
Thickness	: 3 mm
Density	: 1250 – 1300 kg/m³

Different lignin

34

Summary to composites

- Lignin particle size has strong influence on compounding,
- Lignin has a very small melting temperature range,
- Salt content influences the composite properties,
- TS of NPL- and LAW- composites are comparable to soda lignin,
- WA of NPL- and LAW- composites vs. com. Lignin is lower,
- Lignin acetylation improves melting but reduces TS,
- Coupling agents and e-beam treatment improve the composite properties

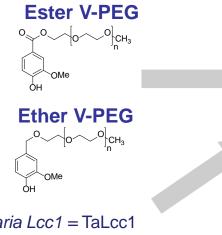
Further work

- Processing of LAW 7 (alkaline pre-treatment) from CBP,
- Processing of NPL from Lanxess Pulping,

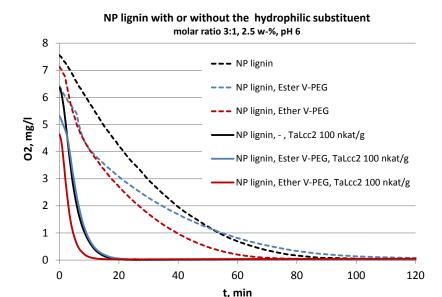
Lignin modification

Scope of the study

- Exploring the enzymatic modification of lignin with hydrophilic compounds to produce novel functional materials
 - functionalized carbohydrates
 - peptides & proteins
 - lignin-chitosan conjugates:
 - improved optical response ⇒ pigmenting materials and fillers in paints and coatings
 - enhanced antimicrobial properties ⇒ packaging, antimicrobial hydrogels
 - Characterization of native and modified lignin



Modification of lignin by chemo-enzymatic functionalization



Thielavia arenaria Lcc1 = TaLcc1 Thielavia arenaria Lcc2 = TaLcc2 Melanocarpus albomyces = Mal / r-Mal

- Functionalization of NP lignin and Indulin AT with synthesized hydrophilic substituents (*Ester/Ether V-PEG*) was experimented using laccases in pH range 6-8 in order to soften lignin
- Improved thermoplastic properties of lignin are desirable in composite processing
 - Enhanced compatibility with reinforcement fibres

Monitoring of dissolved O_2 consumption in the system \rightarrow Laccase/ O_2 reactive towards lignins, hydrophilic substituents, and the 2-component system thereof

Reduced VOC formation

Conclusions to lignin modification

- Selective extraction/fractionation in organic solvents produce LMW and HMW with defined properties
- FT-IR & chemometrics can be used to:
 - discriminate lignin based on processing conditions
 - predict molecular properties functional group composition (³¹P-NMR) of lignin.
- S:G:H ratio controls the reactivity of lignins with laccase
- OHL and KSL lignin were successfully modified with glucosamine.
- OHL and AWL lignin were successfully modified with GYG and chitosan

Open questions still to be worked:

Pre-treatment of lignocellulose:

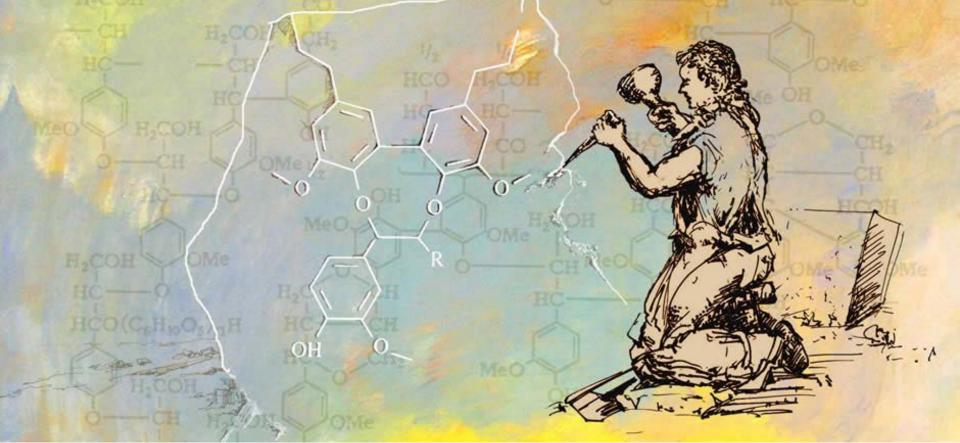
The different pre-treatment processes are economical to compare with respect to the particular application, e.g. pulp for ethanol, lignin for basic chemicals or for composites.

SSF-process:

The provision of the necessary amount of pulp for > 10% ethanol in the SSFprocess must be optimized. The possibilities for this are partial pre-hydrolysis of the pulp, feeding of pulp in fed-batch-technique or a solid-state-fermenter.

P. verruculosum production strain:

The *P. verruculosum*-enzyme complex is favoured for the SSF-process in "second generation". For industrial scale, the used *P. verruculosum* production strain must be improved, in particular to eliminate the carbon catabolite repression by classical genetic methods. This has the advantage that the strain can be produced in the ethanol plant without the requirements for GMOs.


Composite material and lignin modification

The mechanical and hygroscopic properties of composites are to be investigated in relation to the lignin from different outstanding pre-treatment processes. This concerns e.g. phenolic OH-groups, Mol. weight or Klason lignin.

Nihil tam difficile est, quin quaerendo investigari possit

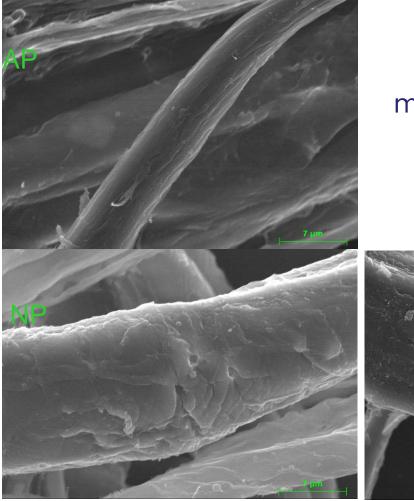
Publius Terentius Afer, named Terenz (* about 195/190 or 185/184 B.C. in Carthage; + 159/158 B.C. in Greece)

Thank you for your attention!

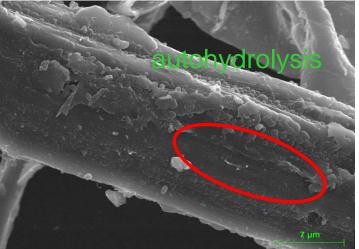
Consortium at project meeting in Bucharest, 2012

Notes to the presentation

EIB.10.013-presentation, Warsaw 26/02/2014



To pre-treatment of lignocellulose



Scanning electron microscopy

magnification: 3500 x

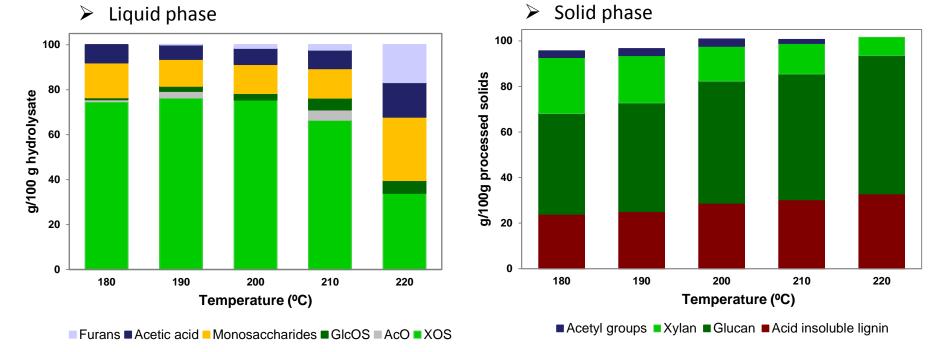
EIB.10.013-presentation, Warsaw 26/02/2014

Comparison of the pre-treatment:

	Alkaline pulping	Natural Pulping
optimal pulping conditions	c _(NaOH) = 3 wt-% T=160 °C t= 30 min	$c_{(HCOOH)} = 60 \%$ T=103-105°C t=40 min after H ₂ O ₂ addition (30 %)
yield of pulp*	ca. 55 % Contains: 2 % Klason-lignin 79 % cellulose 19 % hemicellulose	ca. 45-50 % Contains: 11 % Klason-lignin 83 % cellulose 6 % hemicellulose
yield of lignin precipitation product*	 ca. 20 % ➢ contains 70 % Klason-lignin ➢ ca. 60 % of original lignin is obtained 	 ca. 10 % ➢ contains 80 % Klason-lignin ➢ ca. 40 % of original lignin is obtained

* in relation to wheat straw

Determination of crystallinity

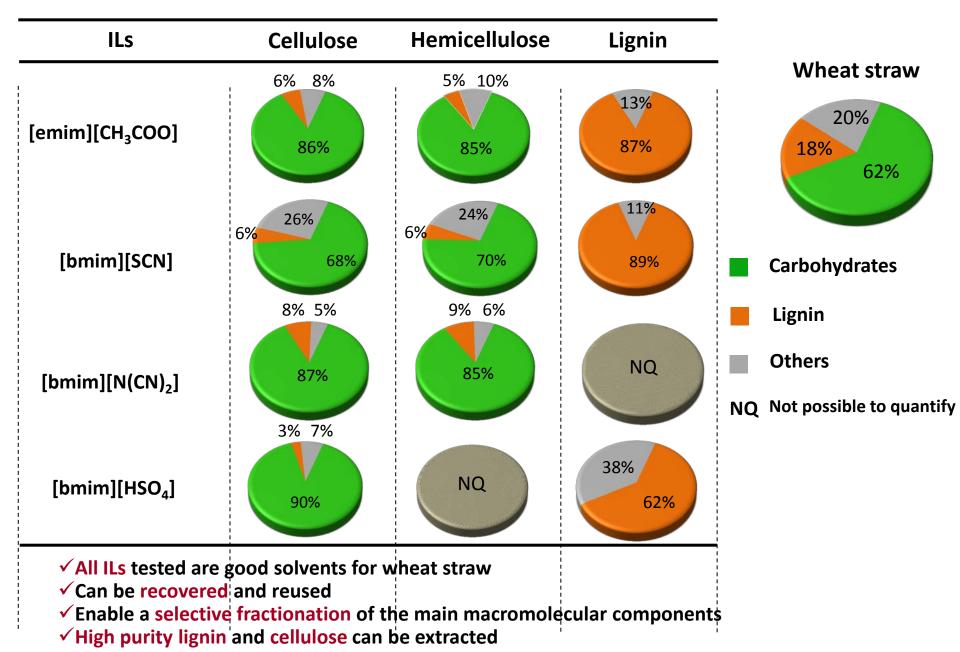

pulp	grinding	hydrolysis rate [%]	C _r [%]
alkaline pulping c(NaOH)= 3 %	milled	83.4	72.2
alkaline pulping c(NaOH)= 3 %	TMP	82.9	69.2
alkaline pulping c(NaOH)= 9 %	TMP	94.0	61.3
natural pulping optimum conditions	milled	77.0	58.0
autohydrolysis optimum conditions	milled	100.0	63.3

Hydrothermal pre-treatment (autohydrolysis)

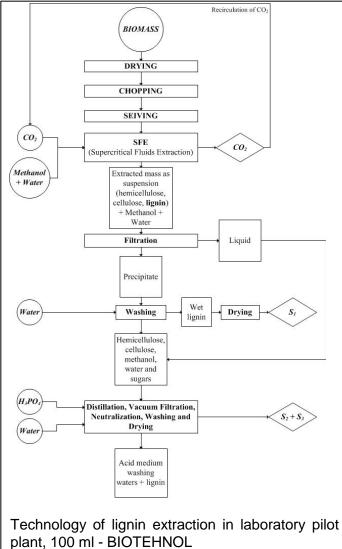
ERA

Optimisation of xylo-oligosaccharides production

- Autohydrolysis is highly selective towards hemicellulose enabling a high recovery of xylo-oligosaccharides (XOS)
- An important glucan and lignin enrichment of the solid phase was possible making the solids very attractive for further processing (*i.e.* enzymatic saccharification)



Conclusions to autohydrolysis:

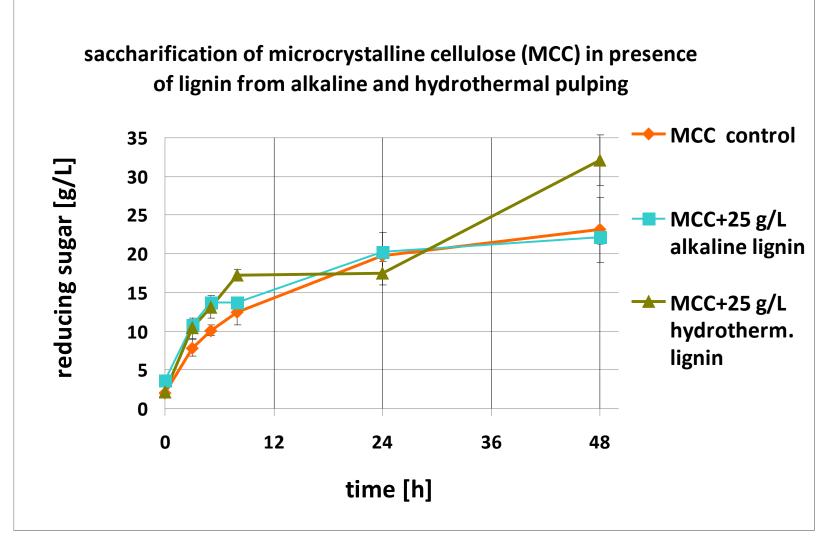

- Autohydrolysis is highly selective towards hemicellulose enabling a high recovery of XOS (~50% of initial xylan)
- An important glucan and lignin enrichment of the solid phase was possible making the solids very attractive for further processing
- Ionic liquid is a good solvent for wheat straw and can be recovered (up to 95%_{initial}) and reused
- Carbohydrate rich-samples demonstrate elevated purities
- ✓ High purity lignin could be extracted

Ionic Liquids Pre-treatment

Pilot scale supercritical fluids extraction installation

CO ₂ extraction unit: SFE Model 100 Producer - Thar		
 Batch weight 	20-30 g	
•CO ₂ flow	4 g/min	
 Co-Solvent flow 	4 g/min	
(MeOH/water mixture)	70%	
•Pressure	200 bars	
•Temperature	113-118 °C	
 (pseudo) steady state regime 	60 min	
 Initial transitory regime 	20 min	
 Co-solvent removal 	30 min	

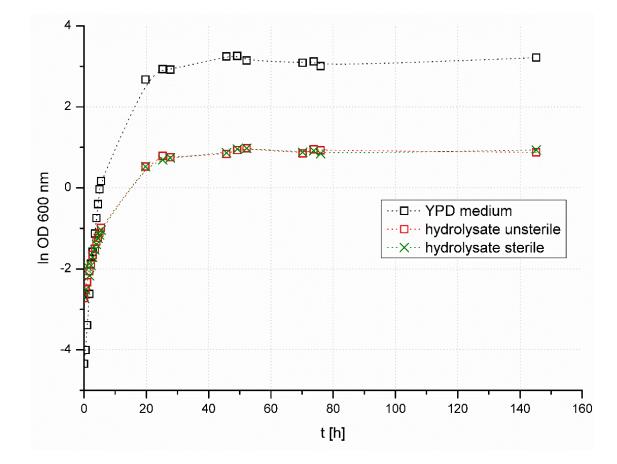
ERA


E

EIB.10.013-presentation, Warsaw 26/02/2014

To the SSF-process

Study on inhibition of *P. verruculosum* cellulase by **ERA** lignin from alkaline and hydrothermal treatments

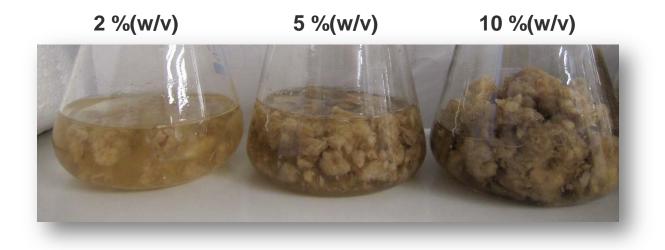


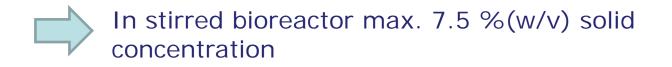
Preliminary tests for SSF-process

Fermentation

- ≻ 37 °C
- ➢ pH 7.0, tap water
- > 200 mg nitrogen
 - ✓ → 1:1 $(NH_4)_2SO_4$: thin stillage
- 3 %(w/v) yeast(S. cerevisiae)

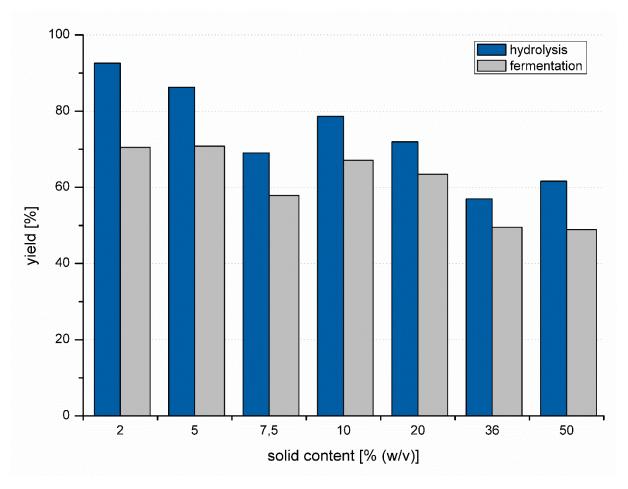
Conclusion:

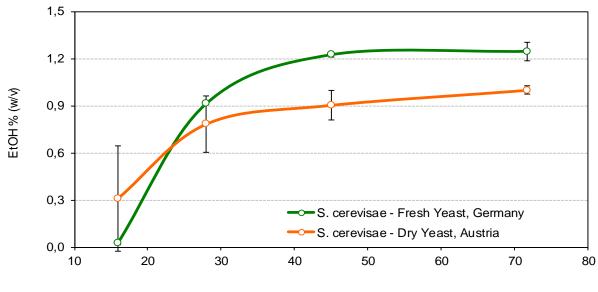

- Yeast grows on Hydrolysate,
- no sterilization necessary



Preliminary tests for SSF-process

- Enzymatic hydrolysis with P. verruculosum
- Influence of solid concentration

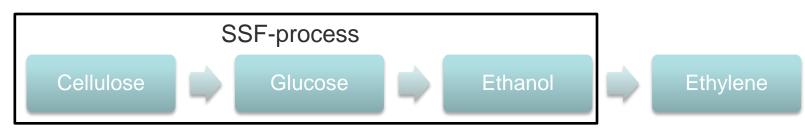




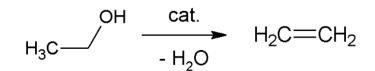
SSF-process at different solid content

Comparison of different yeast strains

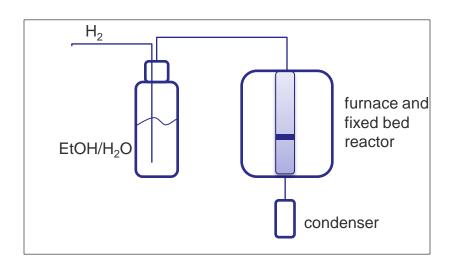
time [h]


Shake flask culture:

50 g/L MCC, 30 FPU/gDM initial OD₆₀₀=12, Temp.=35°C



• Dehydratisation of ethanol



WP 8: Conversion of saccharides into alkenes Dehydratisation of ethanol

- catalytic conversion of ethanol to ethylene over a modified HZSM-5 catalyst
- Optimisation with model solutions:
 - T(furnace) = 350 °C → 100 % conversion but low selectivity
 - Yields up to 33 %
- Conversion of fermentation residue: 80 %(v/w) ethylene
- By-products: diethyl ether, methane, ethane, propene, isobutene, pentane

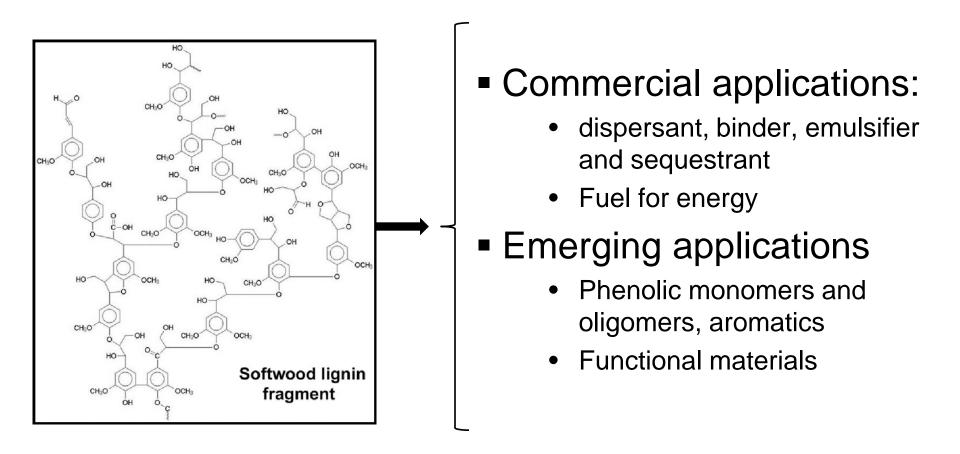
Indulin AT

Protobind 1000

NPL 4

LAW 7b

Acronym	Name, Source
IAT	Indulin AT, Mead Westvaco (US)
Protobind 1000	Protobind 1000, ALM (India)
NPL 1	120214_Fedbatch, Univ. Leipzig
NPL 2	111028-NPL, Univ. Leipzig
NPL 3	110929-NPL, Univ. Leipzig
NPL 4	130212-NPL, Univ. Leipzig
LAW 1	1206LAW ₁ 19-25, TUD
LAW 7	1308-LAW ₇ 40-41, TUD (CBP)
LAW 7b	1308-LAW ₇ 40-41 washed, TUD (CBP)
OS_Acetate	Organosolve_Lignin_Acetate, TUD
IAT_Acetate	Indulin AT-Acetate, TUD



To lignin modification

Lignin application

Results Highlights

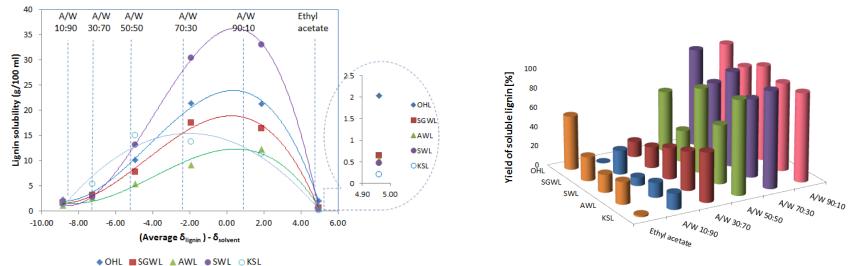
1. Characterization of wheat straw lignin samples

- Mw (SEC), FT-IR, functional groups (³¹P-NMR), reactivity vs. laccase, solubility organic solvents
- 50 samples (TU Dresden), 4 commercial, 56 lignin fractions (selective fractionation)

Models for fast determination of lignin properties

- Mw prediction based on IR spectral properties
- Discrimination of lignins obtained by different processes (natural pulping vs. alkaline)

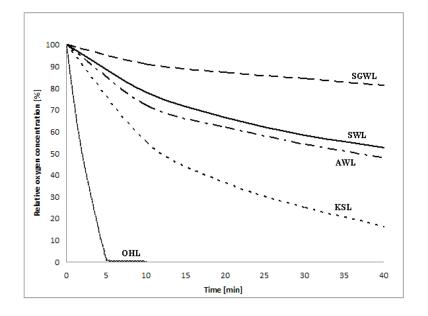
Collaboration TUD, Manuscript in preparation


• Functional group (NMR) prediction based on IR data

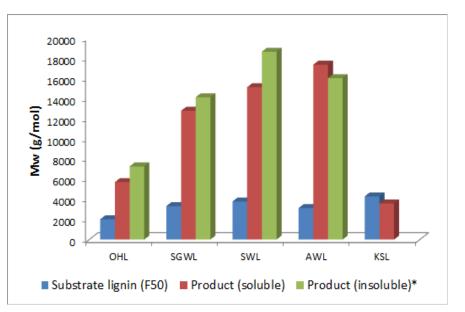
Manuscript submitted

Results Highlights

2. Solubility in organic solvents and selective fractionation


- Solubility depends on composition and degree of condensation
- LMW (low condensed) and HMW (high condensed) lignin fractions can be obtained by selective extraction
- Full characterization of isolated lignins

FOOD & BIOBASED RESEARCH WAGENINGEN UR Manuscript submitted


Results Highlights

3. Enzymatic modification of lignins in water/acetone

a) Lignin polymerization Kinetics

Products

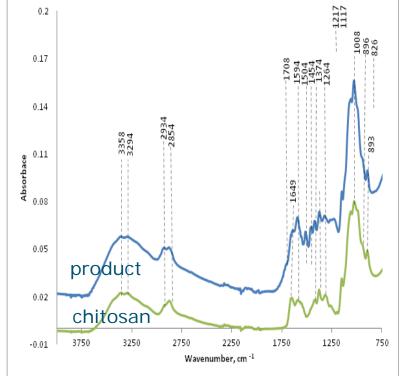
 \blacktriangleright DP = f(H)

Article In Press

Highlights – Enzymatic modification

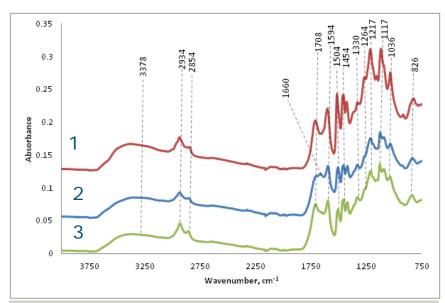
- b) Reactions with glucosamine (GlcN):
- In solution
- Only wood lignin reacted
 OHL, KSL
- Grafting of GlcN proved by NMR and FT-IR
- Inhibition of laccase by GlcN observed

	Mw	OH _{aliph} /OH _{Ar}
OWL-50	2346	0.35
OWL-50/laccase/GlcN	2450	0.43
SGWL-50	3913	0.51
SGWL-50/laccase/GlcN	4031	0.56
SWL	4300	0.63
SWL-50/laccase/GlcN	4398	0.66
AWL-50	3123	0.39
AWL-50/laccase/GlcN	3137	0.31
KSL-50	7980	0.63
KSL-50/laccase/GlcN	12493	1.01


Highlights: Enzymatic modification

- c) Coupling lignin + chitosan
- Reaction in suspension
- Product light brown
- Characterization
 - FT-IR
 - GPC
 - Soluble product

	Mw	Mn	Mw/Mn
OHL-50	2346	264	8.9
OHL-50/Chitosan	2330	282	8.3
OHL-50/Laccase	5708	714	8.0
OHL-50/Laccase/Chitosan	10091	858	11.8



Inoluble product

Highlights: Enzymatic modification

d) Coupling lignin + Gly-Tyr-Gly (GYG)

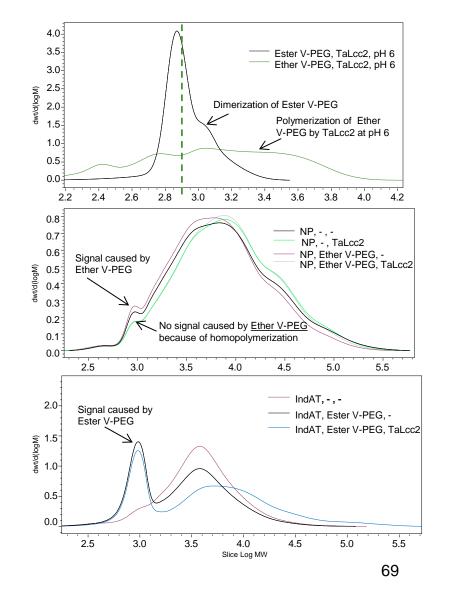
	10100	(IR)	On _{Ar} , G
OHL-50	2346	0.35	3.85 (NMR)
OHL-50/GYG	2423	0.36	3.85(NMR)
OHL-50/laccase	18587	0.8	4.00 (NMR)
OHL-50/laccase/GYG	5708	0.4	4.4 (NMR)
AWL-50	3123	0.6	0.3 (IR)
AWL-50/GYG	3759	0.5	0.27 (IR)
AWL-50/laccase	17359	0.8	0.28 (IR)
AWL-50/laccase/GYG	13214	1.0	0.4 (IR)

MM

Amide/G

 OH_{\star}/G

- 1: control alkali wheat straw lignin-GYG, no enzyme 2: reaction alkali wheat straw lignin-GYG-laccase
- 3: control alkali wheat straw lignin-laccase


- New adsorption 1660 cm⁻¹
- Change in Mw

- Laccase catalysed oxidation forms phenoxyl radicals in substrates; Radical coupling in the 2-component system leads to homo- or hetero-polymerization (i.e. functionalization)
- According to O₂ consumption and MMD (SEC) determination, the tested laccases were active towards all the substrates and homo-polymerization took place
 - Ether V-PEG clearly more preferable substrate for laccase than Ester V-PEG
- Yet, functionalization of Indulin AT or NP lignin by the substituent could not be verified – no or only minor hetero coupling reactions of radicals generated by laccase
- Functionalization of Indulin AT with Ester V-PEG by O₂ oxidation under alkaline conditions was also tested
 - No functionalization of Indulin AT based on dialysis yield of the reaction solution, MMD and Tg determinations
 - Efficient condensation of Indulin AT especially under conditions of high lignin concentration (25 w-%)

What we have achieved:

SIAB UL SIAB	 Optimization of the Natural Pulping Process for pre-treatment of wheat straw up to pilot scale Production of <i>P. verruculosum</i> cellulase and adaption for the SSF process up to pilot scale
IPWC TECHNISCHE UNIVERSITÄT DRESDEN	 Optimization of the alkaline pulping for wheat straw up to pilot scale Characterization of lignin from NP- and alkaline pre-treatment, analysis of functional groups in lignin preparations
IWPT TECHNISCHE UNIVERSITÄT DRESDEN	 Lab-scale production of polymer test samples from NP- and Kraft-lignin in combination with different fibres and additives Preparation of the samples by press moulding and tests of the mechanical and hygroscopic properties
FUMT	 Kinetic studies of enzymatic hydrolysis (pulp and <i>P. v.</i>-cellulase) Studies on SSF process in CSTR and Solid state fermenter Methods for conversion of saccharides into alkenes

VTT	 Modification of lignin by chemo-enzymatic functionalization Comparison between <i>P.verruculosum</i> and <i>T.reesei</i> enzymes SSF with the enzyme mixtures using NP cellulose as substrate
LNEG	 Hydrothermal treatment of wheat straw (autohydrolysis) Optimisation of xylo-oligosaccharides (XOS) production Ionic liquids for fractionation of lignocellulose, high purity lignin
WUR- FBR	 Characterization of lignin samples from wheat straw Enzymatic modification of lignin and characterisation of lignin derivatives (coupling with carbohydrates and proteins) (FBR works as subcontractor of FUMT)
Biotehnol	 Lignin separation with critical / supercritical fluids and characterization by spectrocolorimetry Purification and characterization of extracted lignocellulosic raw materials and composites