

Production of Organic Acids for Polyester Synthesis

Project acronym: POAP

Project no: EIB.12.007

Marta Tortajada

ERA-IB-2 final conference, Berlin, 16./17.02.2016

Project partners

- POAP consortium:
- BIOPOLIS (SME), Spain
- Thünen Institute (Research Institute), Germany
- Universidad Complutense de Madrid (University), Spain
- ASA Special Enzymes (SME), Germany
- H2Biyotek (SME), Turkey Middle East Technical University (University), Turkey
- Ekodenge (SME), Turkey
- Total project budget: 1.562.500 €

Introduction

- -Pretreatment and hydrolysis of substrates
- -Obtention and validation of novel hydrolases
- -Screening and improvement of microbial catalysts
- -Immobilization of microorganisms
- -Process development: fermentation and SSF
- -Purification methods and catalytic upgrade
- -Life Cycle Assessment

Introduction

Citrus peel waste Wheat chaff Raw glycerol

Pretreatment Hydrolysis Screening, Fermentation

Scale-up

Purification

D-lactic acid Itaconic acid

Catalytic upgrade Polymerization

Life Cycle Assessment

Raw materials

	CPW
Lignin	6.5
Pectin	18.6
Arabinose	6.6
Galactose	6.9
Xylose	2.1
Glucose	33.7
Ash&salts	3.7

	Glycerol
рН	2.9
Glycerol	88.0
Methanol	0.0
FAME	-
Water	2
Ash&salts	10.0

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

MECHANICAL

THERMAL

CHEMICAL

Milling

Microwave

Acid

Ultracentrifugal mill

120°C, 40 min

HCl

Blade mill

120°C, 80 min

 H_2SO_4

Cutting mill

Steam stripping

Neutral

Particle size

Steam explosion

Liquid hot water

Organo-Solv

5-8 mm

0.25, 0.75, 2, >2 μm

Alkaline

Ammonia solution

Sodium hydroxide

PRETREATMENT HYDROLYSIS PURIFICATION UPGRADING POLYMERIZATION FERMENTATION

> **HMF** Furfural

Acetate

Formate

Xylose

Glucose Galactose

Arabinose

Levulinic acid

LIFE CYCLE ASSESSMENT – LIFE COSTING CYCLE

WHEAT CHAFF

Best pretreatment:

<0.75 µm particle size No influence milling type 2% NaOH 21°C 60 min

- → Quantitative saccharification
- → Acetate as sole byproduct

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

CITRUS PEEL WASTE

Best pretreatment:

5-8 mm particle size
Steam stripping

- 1 atm 40min
- → >90% saccharification yield
- → >90% limonene recovered after water treatments

Sample: CPW, blade-milled (5-

8 mm)

Pretreatments: 6-14% dry

solids content

66% humidity CPW (PD-CPW)

Enzymatic hydrolysis:

50 ºC, 300 rpm

Excess cellulase and pectinase

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

NOVEL HYDROLASES

	Enzyme activity [units/g]									
Lyophilizates	exo- Cellulase	endo- Cellulase	ß- Glucosidase	Xylanase	Endo- pectinase					
P. funiculosum chaff	5,73	1.125	4,7	718						
A. fissilis chaff	3,13	1.200 9,6		275						
A. aculeatus chaff	1,23	275	6,0	51	> 30					
P. funiculosum CPW	8,16	1.880	8,3	560	> 600					
A. fissilis CPW	5,39	1.730	1,1	583	0					
A. aculeatus CPW	0,51	680	18,1	115	14,4					

- → Penicillium funiculosum and Aurantioporus fissilis strains selected as producers.
- → Four different cellulase, hemicellulase and pectinase preparations produced and supplied.

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

NOVEL HYDROLASES

www.era-ib.net

- → Characterization of new cellulase and hemicellulase preparations.
- →pH profile of exo-cellulase and xylanase of *A. fissilis* shifted slightly to neutral values.
- → Hydrolases seem to have higher thermostabiility

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

CITRUS PEEL WASTE: SACCHARIFICATION

(Taguchi design):

Optimized hydrolisis CPW

Benchmark 3 feedings

12 FPU/g DS

Pectinase/depectination required

70-90% YT at 6 FPU/g DS

Biogazyme

4-5 feedings 28 FPU/g DS

Pectinase/depectination required

70-80% YT at 6 FPU/g DS

→ Working conditions seem to favour SSF.

POAP

ERA-IB-2 Final conference, Berlin, 16./17.02.2016

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

WHEAT CHAFF: SACCHARIFICATION

- SSF with two different itaconic acid producers was tested.
- SSF was not possible with *U. maydis*,
 A. terreus very low titer (< 2 g/L).
- Conditions of hydrolysis do not correspond with fermentation conditions of A. terreus and U. maydis.
- → SHF must be attempted in this case

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

FERMENTATION — Screening set-up

Substrates used for screening and selection

Pure and raw glycerol from biodiesel processing Synthetic hydrolysates Ground chaff, chaff hydrolysate Ground orange peels, orange peels hydrolysate

Screening strain sources

Bacteria (mesophilic strains, lactic acid bacteria), yeast and filamentous fungi Culture and proprietary strain collections

Screening criteria

Product yield and productivity
Performance in aerobic and anaerobic conditions (D-LA)
Tolerance towards product and substrate
Byproduct formation

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

WHEAT CHAFF

Pure glucose

- Itaconic acid: 28 g/L
- Productivity: 0.29 g/L/h
- Yield: 0.31 (w/w)

- Itaconic acid: 13.6 g/L
- Productivity: 0.09 g/L/h
- Yield: 0.16 (w/w)

- → Change in morphology detected, presence of additional inhibitors.
- → Work in progress to further purify hydrolysate

ERA-IB-2 Final conference, Berlin, 16./17.02.2016

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

WHEAT CHAFF

Aspergillus terreus, SHF

Pure glucose

Itaconic acid: 54 g/L

Productivity: 0.32 g/L/h

Yield: 0.61 (w/w)

Wheat chaff hydrolysate

Itaconic acid: 23.3 g/L

• Productivity: 0.16 g/L/h

Yield: 0.27 (w/w)

- → 1.7 times higher IA titer than *U. maydis*
- → Low yield and sporulation pinpoint presence of inhibitors
- → Further purification ongoing to scale-up with *A. terreus*

ERA-IB-2 Final conference, Berlin, 16./17.02.2016

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

CITRUS PEEL WASTE

D-lactic acid > 99%

→ SHF at low total sugar and using hydrolysates in batch yields 70-80% D-lactic acid at 45 °C

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

CITRUS PEEL WASTE

D-lactic acid > 99%

- → Fed-batch operation enables reaching higher D-lactic acid titers.
- → Further optimization on going to select final scale-up set-up.

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

Drying-induced elution of Ca-Lactate

- → Further improvement on going (impurities characterization)
- → Patent pending

POAP

ERA-IB-2 Final conference, Berlin, 16./17.02.2016

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

Esterification with n-butanol

www.era-ib.net

- → Reactive distillation and extraction is being developed for D-lactic acid purification
- → Conditions with homogeneous acid catalysts have been optimized

UPGRADING

Standard reaction conditions: 400 mL 5 % IA solution, $\rm H_2$ -pressure, 1 g 1-5 % metal/ $\rm Al_2O_3$, 40-80 °C

- → Most efficient catalyst: 5 % Pd-Pt/Al₂O₃ at 40 °C
- → 100 % yield to methylsuccinic acid

www.era-ib.net

ERA-IB-2 Final conference, Berlin, 16./17.02.2016

LIFE CYCLE ASSESSMENT - LIFE COSTING CYCLE

ITACONIC ACID BASED POLYESTERS

REACTION SCHEME 1. IA + MSA + PD -> (IA-PD)n-(MSA-PD)m Opt. Crosslinking

IA[%]	MSA [%]	Tg [°C]
100	0	90-92
75	25	82-83
50	50	<25
25	75	<25

Protective layer with high elasticity for fiber-reinforced plastics possible, *e.g.* boat-parts, car-parts...

100 % Itaconic acid-PD → inflexible

75 % Itaconic acid-25 % Methylsuccinic acid-PD → inflexible

50 % Itaconic acid-50 % Methylsuccinic acid-PD → flexible

25 % Itaconic acid-75 % Methylsuccinic acid-PD → very flexible

LIFE CYCLE ASSESSMENT – LIFE COSTING CYCLE

- Sustainability evaluated through LCA and LCC studies: environmental performance and comparison to selected benchmarks
- Functional units selected: PLA (LA) and PIA (IA)
- Cradle to Factory gate system boundaries
- Burden free raw materials as per agricultural residues

LIFE CYCLE ASSESSMENT – LIFE COSTING CYCLE

Preliminary assessment

Benchmark (bio-PLA):

GWP: 1.45 kgCO2/kg PLA

Energy: 24.7-35,7 MJ/kg PLA

Water: 9.9 kg/kg PLA

Benchmark (PIA-softwood):

GWP: 1.32 kgCO2/kg PIA

Energy: 14.9 MJ/kg PIA

• Water: 7.5 kg/kg PIA

Benchmark (PCL):

GWP: 3.1-5.7 kgCO2/kg PCL

- → 57% energy > steam explosion
- → 3 kg/kg LA water consumption
- → Recycling of solvents

www.era-ib.net

Summary

	Production of Organic Acids for Polyester Synthesis	Year 1				Year 2				Ye	ar 3		Year 4				
	Production of Organic Acids for Polyester Synthesis		6	9	12	3	6	9	12	3	6	9	12	3	6	9	12
WP1	Raw materials and fermentation substrates																
Task 1.1	Characterization of raw materials																
Task 1.2.	Optimization of raw glycerol pretreatment															\Box	
Task 1.3.	Optimization of lignin-poor biomass pretreatment																
Task 1.4.	Comparison of chemical and enzymatic hydrolisis for lignin poor biomass																
Task 1.5.	Optimization of the hydrolysis process for lignin-poor biomass																
WP2	Screening for enzymes and microorganisms																
Task 2.1	Development of new enzymes for the disintegration of biomass															\Box	\Box
Task 2.2.	Screening for new hydrolases for the release of monosaccharides and sugar acids																
Task 2.3.	Improvement of selected enzymes by site-directed mutagenesis																
Task 2.4.	Development of special enzyme products by gene knock-out																
Task 2.5.	Characterization of new cellulases and hemicellulases																
Task 2.6.	Screening for MOs for D-lactic production using glycerol as substrate																
Task 2.7.	Screening for MOs for D-lactic production using hydrolisates as substrate																
Task 2.8.	Screening for MOs for itaconic production using glycerol as substrate																
Task 2.9.	Screening for MOs for itaconic production using hydrolisates as substrate																
WP3	Fermentation for D-lactic and itaconic acid production																
Task 3.1	Selection and improvement of biocatalyst for D-lactic and itaconic acid production																
Task 3.2.	Production of D-lactic with free and immobilized cells																
Task 3.3.	Production of itaconic acid with free and immobilized cells																
Task 3.4.	Simultaneous saccharification and fermentation for D-lactic acid production																
Task 3.5.	Simultaneous saccharification and fermentation for itaconic acid production																
WP4	Process development and scale-up																
Task 4.1	Selection of most suited feedstock/strain/fermentation combination (LA and IA)															\Box	
Task 4.2.	Kinetic analysis and process modelling (LA and IA)																
Task 4.3.	Optimization of fermentation processes (LA and IA)																
Task 4.4.	Scale up fermentation under optimized conditions (LA and IA)																
WP5	Product isolation, purification and upgrading																
Task 5.1	Development of product isolation and purification techniques (LA and IA)																
Task 5.2.	Catalytic upgrading of monomers by derivatisation and production of polymers																
WP6	Process economics and sustainability																
Task 6.1	Definition of the goal and system boundaries														\neg		\vdash
Task 6.2.	Data collection and inventory analysis																
Task 6.3.	Evaluation of environmental impact, energy and cost balance																
WP7	Project management																

Summary

Project outcome

General Evaluation

Benefits of international collaboration

www.era-ib.net

General Evaluation

Dissemination

- 1. Krull, S. *et al.* (Thünen Institut) Biotechnological itaconic acid production from hydrolysates (Poster), 3rd European Congress of Applied Biotechnology, Nice, France, September 2015
- 2. Oetken J. et al. (Thünen Institut). Optimization of common chemical pretreatments to enhance the enzymatic hydrolysis of wheat chaff (conference abstract, submitted) 12th International Conference on Renewable Resources & Biorefineries, Genth, Belgium, May 2016.
- 3. Krull, S. *et al.* (Thünen Institut) Biotechnological itaconic acid production from wheat chaff hydrolysate. (conference abstract, submitted) 12th International Conference on Renewable Resources & Biorefineries, Genth, Belgium, May 2016.
- 4. De la Torre, I. *et al.* (UCM, Biopolis) "Effect of several thermal and mechanical pretreatments on solid composition and saccharification of orange peel wastes". Poster communication. Biorefinerias 2016, Concepcion (Chile). November 2015.
- 5. De la Torre, I. *et al.* (UCM, Biopolis) "Orange peel waste enzymatic saccharification: batch and fed-batch operation optimisation". Biolberoamerica International Congress, submitted. Salamanca (Spain). June 2016.
- 6. De la Torre, I. et al. (UCM, Biopolis) "Effect of operational conditions on lactic acid production in model solutions resembling orange peel hydrolysates". Biolberoamerica International Congress. Salamanca (Spain), submitted. June 2016.
- 7. Pocan, P. et al. (H2Byotek) "Enzymatic hydrolysis of corn cob, orange and pomegranate peels: a comparative study" submitted.
- 8. Bustamante, D. *et al.* (Biopolis), "Strain screening and improvement for D-lactic acid production", ANQUE-ICCE-BIOTEC 2014, Madrid (Spain) July 2014.
- 9. Bustamante, D. *et al* (Biopolis, UCM) "Production of D-lactic acid from orange peel waste: strain selection and optimization"". Biolberoamerica International Congress, submitted. Salamanca (Spain). June 2016.

Contact details

Marta Tortajada Serra

****** +34 963 160 299

1 +34 963 160 367

<u>marta.tortajada@biopolis.es</u>

Parc Científic Universitat de València, Edificio 2,

C/ Catedrático Agustín Escardino Benlloch, 9,

46980, Paterna, Valencia, Spain

www.biopolis.es

