

ERA CoBioTech (ERA-Net Cofund on Biotechnologies)

ACHEMP2018

Kick-off session: "Biotechnology for a sustainable bioeconomy"

Bioprocesses for the optimized, integrated production of butyl esters from sustainable resources

Acronym: BESTER

Dr. Alexander Wentzel, SINTEF Industry, Trondheim, Norway

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant 722361

Frankfurt am Main, 14.06.2018

- SINTEF Industry, Norway (SINTEF, RTO) Dr Alexander Wentzel
- Ulm University, Germany (UULM, UNI) Prof Peter Dürre
- Green Biologics Ltd., United Kingdom (GBL, IND) Dr Liz Jenkinson
- University of Rostock, Germany (UROS, UNI) Prof Olaf Wolkenhauer
- **Processium SA**, France (PROC, SME) Dr Hector Osuna
- Imperial College London, United Kingdom (ICL, UNI) Dr Jeremy Woods
 [+ Borregaard AS, Norway: advisors and feedstock supplier]
 [+ HITS/FAIRDOM, Germany: subcontractor for Data Management, w/ UROS]
- Total project budget: 2.842.000 € (of which 2.119.000 € publ. funding)

ial College

Project period: 2018-04-01 --- 2021-03-31 (36 months)

processium

GreenBiologics

The BESTER project will ...

• ... develop a set of scalable, robust, and highly productive manufacturing processes for butyl esters from sustainable resources for the bio-based commodity chemicals market, usable, e.g. in flavours and fragrances.

BESTER will specifically ...

establish clostridial bioprocesses for an optimized integrated production of three different butyl esters, using wood-derived lignocellulosic sugars (BALI [™] , Borregaard AS) as a sustainable 2 nd generation fermentation feedstock	develop organic acid production and enzymatic esterification processes, linkable to ABE fermentations as a source of biobutanol (BuOH)
apply Systems biology guided strain engineering and Synthetic biology principles to establish new metabolic pathways in Clostridia and mitigate key metabolic bottlenecks towards three selected organic acids	perform smart process integration with continuous acid removal by enzymatic esterification and ester recovery to ensure viable ester production by simultaneously solving inhibitory effects of acids and butanol, low acid productivity, and unfavourable cell mass yield

Scientific approaches

 Synthetic biology, Systems biology, Bioinformatic tools, Biotechnological approach(es)

Project topic areas

- Sustainable production and conversion of different types of feedstocks and bioresources into added value products
- Development of new products
- Value-added products and supply services
- Sustainable industrial processes

Scientific approach and project topic area

Re-commercialising the ABE process A brief history

The ABE process and its traditional limitations

- Initial plants relied mostly on batch processing
 - Corn or sugar feedstocks
- Biphasic growth
 - Acidogenesis
 - Solventogenesis and sporulation
 - Turnaround and restart
- Challenging economics
 - Mostly effective in specific economic situations
 - Wars
 - Economic isolation
- GBL has overcome these limitations to recommercialise the ABE process
 - Monophasic fermentation with reduced sporulation
 - Sustained solvent production using in situ product removal (ISPR) to alleviate solvent toxicity

ERACoBioTech CLEAVE: Proprietary GBL CRISPR/Cas based genome editing technology

Establishing efficient clostridial production of selected acids

Genome-scale metabolic model reconstruction

• Currently no GEMs available for the two *Clostridium* chassis *spp.* selected for BESTER

New GEMs to be reconstructed based on available genome sequences

Systems Biology cycle for rational strain engineering

Process development: Enzymatic esterification

Process development: modelling and integration of unit operations

Fermentation of lignocellulosic substrate to acids, cell recycle

Acid enrichment and recovery technology

Ester extraction and ester product recovery

Process modelling and design

Integration of unit operations and process intensification

Inputs:

- BALI[™] lignocellulosic sugars (Borregaard)
- Biobutanol (GBL)
- CalB (Novozymes)
- Other media components
- Organic solvent

Intermediates:

- Acids
- Cell mass
- Fermentation by-products

Products:

• Butyl esters

Borregaard

Source: https://ec.europa.eu/energy/sites/ener/files/documents/11 gisle lohre johansen-borregaard.pdf

Borregaard's biorefinery concept BALI™

- BALI[™] is a biorefinery concept developed by Borregaard for production of cellulosic sugar and ethanol and lignin performance chemicals
- The BALI[™] technology has been scaled up and demonstrated in a 1 mt/day feedstock demo plant in Sarpsborg, Norway
- The demo plant has been in continous operation since Q1 2013
- Feedstock tested: Poplar, sugar cane bagasse, spruce and pine
- Excellent sugar and ethanol yield due to low level of inhibitors

Borregaard's BALI[™] process

Borregaard's BALI[™] process

Borregaard's biorefinery concept BALI™

Source: https://ec.europa.eu/energy/sites/ener/files/documents/11_gisle_lohre_johansen-borregaard.pdf

Project plan

Socio-economic, environmental and techno-economic aspects

Data management UROS – HITS/FAIRDOM

- New genome-scale metabolic models of selected chassis strains
- New synthetic modules for acid production in Clostridia
- Expanded genetic toolkit for Clostridia strain engineering
- New engineered Clostridium spp. strains optimized for the production of selected acids
- Unit operations for acid production, acid enrichment, enzymatic esterification, and ester extraction and product recovery
- New butyl ester production process designs
- Techno-economic and socio-economic assessments of butyl ester production processes
- Demonstration of at least one butyl ester production process
- LCA of targeted ester products
- Stakeholder interaction for rapid implementation of manufacturing processes and commercialization of ester products.
- IPR, scientific dissemination, and dialog with users and the general public

Funding:

The Research Council

of Norway

Summary

Scalable, robust, and highly productive manufacturing processes for butyl esters from sustainable resources

BBSRC Innovate UK A

Agence Nationale de la Recherche

Bundesministerium für Bildung und Forschung

Alexander Wentzel, Dr. rer. nat. Senior researcher Research group Biotechnology Department of Biotechnology and Nanomedicine SINTEF Industry Richard Birkelands vei 3 7034 Trondheim, Norway +47 93200776 alexander.wentzel@sintef.no www.sintef.no

WWW.BESTER-PROJECT.EU