

ERA CoBioTech (ERA-Net Cofund on Biotechnologies)

ACHEMP2018

Kick-off session: "Biotechnology for a sustainable bioeconomy"

Project name: Thermophilic bacterial and archaeal chassis for extremolyte production

Project acronym: HotSolute Name: Bettina Siebers MEB, University Duisburg-Essen

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant 722361

Frankfurt am Main, 13.06.2018

Project partners

HotSolute partners

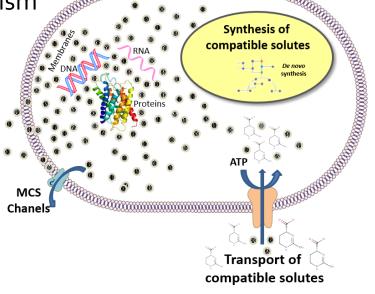
- P1: Bettina Siebers, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen (Germany)
- P2: Jennifer Littlechild, Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter (The United Kingdom)
- P3: Daniela Monti, Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare – CNR (Italy)
- P4: Felix Müller, Corporate Innovation, Evonik Industries AG, (Germany)
- P5: Elizaveta Bonch-Osmolovskaya, Federal Research Center of Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology (Russia)
- **P6: Jacky Snoep**, Biochemistry, Stellenbosch University (South Africa)
- Total project budget: 1670 k€
- Project start: April/July 2018

Project objectives

- Production of extremolytes, compounds with medical and personal care application by
 - ✓ thermophilic enzyme cascades
 - ✓ two thermophilic `cell factories'
 - Bacterium Thermus thermophilus (Tth, 70°C, pH 7.5-7.8)
 - Archaeon Sulfolobus acidocaldarius (Saci, 75-80°C, pH 2-3)

Scientific approach and project topic area

- Synthetic biology, Systems biology
- Development of new products, value-added products and supply service



Compatible solutes

- Response upon environmental stress \rightarrow cell protection
- Organic low-molecular weight compounds
- Highly soluble
- Accumulated in high concentrations (250 mM 1.1 M)
- No interference with central metabolism

Protection and stabilization

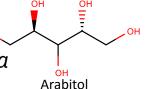
- Cell membrane
- RNA-/ DNA- and protein

What are compatible solutes ?

- Trehalose, Sucrose
 - Mesophilic and extremophilic organisms e.g. *E. coli*, *Sulfolobus* acidocaldarius

Polyols

Glycerol, Arabitol, Inositol


 Halophilic fungi and halotolerant plants e.g. Wallemia ichthyophaga (fungi)

Aminoacids and derivates

- Prolin, Glutamic acid, Glycinbetain, Ectoin, Hydroxyectoin
 - Mesophilic and halophilic bacteria, halotolerant plants, e.g. *E. coli*, *Halomonas elongata*

Extremolytes

Industrial Applications

Trehalose

- Food industry, stabilizer & sweetener
- Cosmetic industry, body lotions & deodorants
- Pharma industry, cryopreservation e.g. sperm cells, stem cells
- Biotech industry, stabilization of biomolecules e.g. DNA, enzymes

NAGASE America

Arguelles, 2000; Higashiyama, 2002; Colaco et al., 1992; Gribbon et al., 1996; Roser, 1991

Ectoine & Hydroxyectoine

- Cosmetic industry, soaps, creams, sun protection and antiaging
- Pharma industry , allergy products, eye-drops, nose spray, ointments
- Biotech industry, stabilization of biomolecules e.g. antibodies

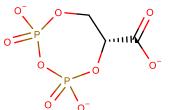

Bitop AG, Merck AG

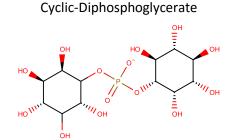
Where do we find compatible solutes ?

Compatible solutes are present in all three domains of life....

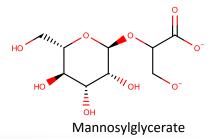
Novel Extremolytes

Cyclic 2,3-Diphosphoglycerate


 Methanogenic (hyper)thermophilic archaea e.g. Methanothermus fervidus, Methanopyrus kandleri, Methanothermobacter thermoautotrophicus


Di-myo-inositolphosphate

 Hyperthermophilic archaea and hyperthermophilic bacteria e.g. Pyrococcus woesii, Thermococcus kodakaraensis, Archaeoglobus fulgidus, Thermotoga maritima


Mannosylglycerate

 Hyperthermophilic archaea and bacteria; mesophilic bacteria and eukarya e.g. Pyrococcus horikoshii, Pyrococcus furiosus, Thermococcus litoralis, Thermus thermophilus, Rhodothermus marinus, red algae

Di-*myo*-inositolphosphate

Cyclic-Diphosphoglycerate

- Thermoadaption (*M. kandleri* 1.1 M cDPG; Hensel & König. 1988; Lehmacher et al., 1990; Shima et al., 1998)
- Stabilization of plasmid DNA (*in vitro*) (Lentzen & Schwarz, 2006)
- Protection of DNA against reactive oxygen species (*in vitro*) (Lentzen & Schwarz, 2006)

Di-myo-inositolphosphate

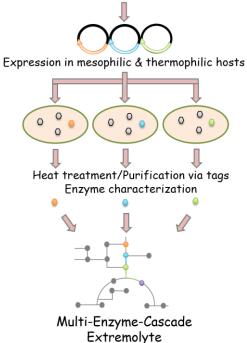
- Heat stress and osmoadaption (*P. woesii* and *P. furiosus* 0.4 -0.6 M DIP; Scholz & Hensel,1992; Esteves & Santos, 2014)
- Stabilization of plasmid DNA (*in vitro*) (Lentzen & Schwarz, 2006)
- Protection of DNA against reactive oxygen species (*in vitro*) (Lentzen & Schwarz, 2006)

<u>Mannosylglycerate</u>

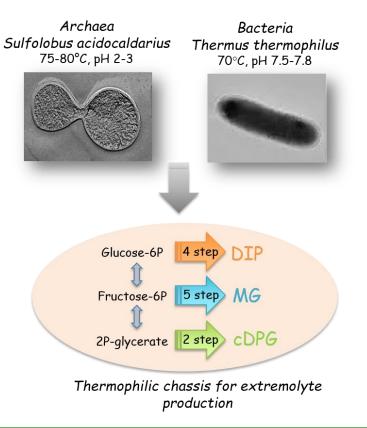
- Osmoadaption (*P. furiosus* 0.25 M MG; Martins & Santos, 1992)
- Stabilization of proteins (*in vitro*) (Borges & Santos, 2001)
- Protein protecting properties; yeast model of Parkinson's disease (Faria & Santos, 2013)

\rightarrow NO suitable production systems or production strains

 \rightarrow The synthesis pathways and enzymes are known !

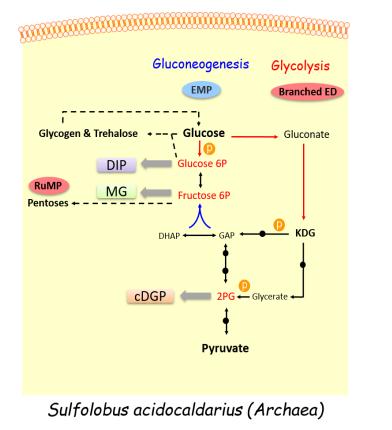


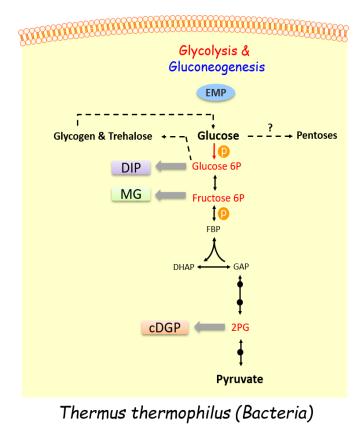
The Approach



"in vitro"

Selection of (hyper)thermophilic genes Construction of expression vectors


Thermophilic enzyme cascades Thermophilic expression hosts "in vivo"



Central metabolism well established Genetic systems available

Project Plan

Work Packages

communication and dissemination (Technology, Transfer and Exploitation WP 1 (P1, P4, SSC UDE, all partners) HAT: Management,

Scientific Advisory Board (SAB)

WP 2 (P1, P2, P3, P6) Data Management & Modelling (FAIRDOM Hub)

WP 3 (P1, P2, P3, P5) Screening & Expression Platform (E. coli, T. thermophilus, S. acidocaldarius)

WP 4 (P1, P2, P3, P6) Thermophilic Enzyme Cascade & Strain Design for Extremolyte Production (cDPG, DIP, MG) & Recovery

WP 5 (P1, P4) Scale Up Production, Product Testing & Life Cycle Assessment

Project plan

Datamanagement

FAIRDOMHub/SEEK (Jacky Snoep)

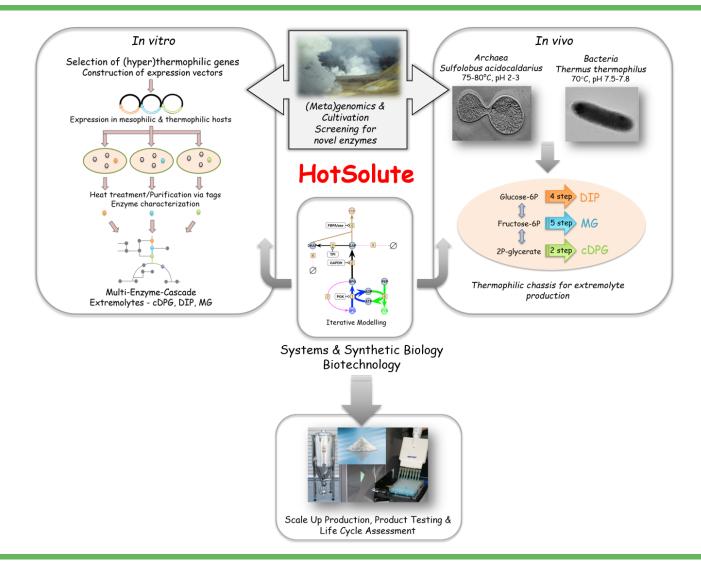
Communication strategy

- Industry
- Scientific community
- Wider public community/consumers

Responsible research and innovation

- Novel thermophilic enzyme cascades
- Novel thermophilic archaeal and bacterial chassis
- Production of three high-value product 'extremolytes'

- This project will develop the current applications of thermophilic enzyme cascades and micro-organisms for the industrial production of three small molecule extremolytes which have both medical and healthcare applications.
- Planed implementation and exploitation of results
 - Scale-up and Application
 - Industrial partners



Summary

Contact details

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Bettina Siebers

Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, University of Duisburg-Essen, Essen, Germany **bettina.siebers@uni-due.de**

LAND

Thank you for your attention !

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant 722361

