

ERA CoBioTech (ERA-Net Cofund on Biotechnologies)

ACHEMA2018

Kick-off session: "Biotechnology for a sustainable bioeconomy"

Project name: Investigating large scale bioreactor effects in microbial application

Project acronym: ScaleApp Name: Marco Oldiges

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant 722361

Frankfurt am Main, 14.06.2018

Project partners

Peter Neubauer Stefan Junne

Coralie Lefebvre Marie Carmen Alvarez Morales

Andres Maser

Marco Oldiges (coordinator) Eric von Lieres

Total project budget: 2.720 k€

Microbial cell factories for Bioprocesses: <u>A hell of a job</u>

"Force a complex organism optimized to survive under natural conditions to do: <u>non-natural</u> high product formation, in a <u>non-natural</u> environment, with <u>non-natural</u> ultimate efficiency, <u>without</u> being stressed! "

Who can do this job?

Important critical decisions :

- optimal chassis organism
- tailored metabolic network design
- bioprocess design parameters
- bioprocess scale-up (metabolic robustness !!!)

Bioprocess development depends on lab-scale optimization.

Process transferability

between scales

low mixing performance / energy dissipation result in inhomogeneities

Gradient formation in large-scale bioreactor

JÜLICH

Forschungszentrum

gradient + mixing complex oscillation

Two compartment scale-down devices most frequently used Metabolic phenotyping in separate compartments

ScaleApp objective

Tailor-made design of scale-down bioreactor setup for several industrial bioreactor configurations and scales

Project plan

WP5: Life cycle analysis (LCA) and project management WP6: Communication and Dissemination (Lead: FZJ/TUB)

- Development of multi-position monitoring tools and their application for in situ measurement of gradients in aerated bioreactors
- Design of suitable scale down bioreactors, which mimic more precisely true conditions in the industrial scale
- Investigation of the microbial response to gradient formation to identify targets for improvement of strain and process
- Hybrid modelling with CFD based on gradient measurements and metabolic modelling for the prediction of scale up effects

Summary: Implementation of results

- Support of industrial biotechnology partners in establishing improved large-scale cultivation processes.
- Generating commercially exploitable IP on cellular metabolism, scaleup/down and PAT technologies.
- Training of skilled researchers in large-scale cultivation and scale-up/down strategies for the industrial biotechnology and bioprocessing industries.
- Provision of learning material for courses dedicated to the topic of scale up/scale down and an increased knowledge of the interdisciplinary biotechnological and process engineering disciplines.
- Information about relevance of industrial biotechnology and improvement of its societal acceptance

Contact details

Peter Neubauer Stefan Junne

Marie Carmen Alvarez Morales

Marco Oldiges (coordinator) Eric von Lieres

Prof. Marco Oldiges Forschungszentrum Jülich Institute of Bio- and Geosciences (IBG) IBG-1: Biotechnology Leo-Brandt-Straße D-52428 Jülich m.oldiges@fz-juelich.de +49 (0) 2461 – 61 – 3951 http://www.fz-juelich.de/ibg/ibg-1