

ERA CoBioTech (ERA-Net Cofund on Biotechnologies)

ACHEMA2018

Kick-off session: "Biotechnology for a sustainable bioeconomy"

Project name: Enzyme platform for the synthesis of

chiral amino alcohols

Project acronym: TRALAMINOL

Name: Wolf-Dieter Fessner

Project partners

Wolf-Dieter Fessner, Technische Universität Darmstadt, Germany Pere Clapés, CSIC-IQAC, Barcelona, Spain Laurence Hecquet, Université Clermont Auvergne, Aubiere, France John Ward, University College London, U.K. Simon Charnock, Prozomix Ltd., Haltwhistle, U.K. Michael Breuer, BASF SE, Ludwigshafen, Germany

Total project budget: 2.885.000 €

Project start: 01. April 2018

Introduction

- Amino alcohols comprise highly diverse classes of natural products
 - great importance due to their bioactivity
 - chiral building blocks for pharmaceuticals and agrochemicals
- chemical synthesis of stereo-pure amino alcohols difficult
 - typically requires uneconomical protective group manipulations
 - typical chemical syntheses in industry ...
 - ... use hazardous substances
 - ... consume large amounts of energy
 - ... generate toxic waste

- Tralaminol will develop innovative biotechnological processes for the sustainable synthesis of amino alcohols
 - regenerable metabolic intermediates as starting materials
 - mild reaction conditions and high selectivity levels

Important amino alcohols

cinoramphenico

sympathomimetics
antibiotics
anti-diabetics
special amino acids
complex lipids
etc.

Integrated biocatalytic platform

Exemplary one-pot process (I)

Villegas-Torres et al., Enzyme Microb. Technol. 2015, 81, 23-30

Exemplary one-pot process (II)

Hernandez et al., ACS Catal. 2017, 7, 1707–1711

Project plan

600 x 2 L production line

- enzyme prospecting
- protein production
- biocatalyst discovery
- reaction development
- industrial demonstration
- technology dissemination

Colorimetric assay plates

lab scale reactions

750 L pilot lab demonstration

Implementation

Overview on work package structure and project interaction matrix

Project timeline

Existing enzyme panels available from partners allow instantaneous joint start without waiting delays — all instrumentation and technologies in place — Consortium Agreement signed — recruiting of new personnel in progress

Expected outcomes

- Enzyme superfamily portfolios designed for maximum genetic diversity for various reaction types (1000s of enzymes for carboligation, amination, etc.) will become available for future exploitation
- Robust biocatalysts characterized for industrial processes
- Novel one-pot, multi-step processes for stereospecific syntheses
- Integrated reaction platform for the sustainable manufacture of multifunctional chiral building blocks
- Significant potential for environmental impact by replacing multi-step energy and resource-intensive conventional chemical processes
- Strengthening the global competitiveness of the European chemical and pharmaceutical industries
- Accelerated transition from fossil raw materials toward a sustainable bio-based economy

Summary

Tralaminol will create a unique enzyme platform for the sustainable synthesis of chiral amino alcohols, fully exploiting the synergy between synthetic biology and biocatalysis

- Toolbox of robust carboligation enzymes (aldolases, transketolases)
- Toolbox of robust amination enzymes (transaminases, imine reductases)
- Flexible strategy for synthesis of various positional isomers
- Selective access to complementary diastereomers
- Small bio-based metabolites as sustainable starting materials
- Economically interesting, highly integrated one-pot processes operating under mild reaction conditions
- Novel biosynthetic routes to bio-active (non-)natural products ("artificial metabolic pathways" for "Systems Biocatalysis")
- Product molecules with high added value (diverse pharma market segments, including drugs related to treatment of cancer, circulatory disease, diabetes, microbial infection and others)

Contact details

Prof. Dr. Wolf-Dieter Fessner TU Darmstadt Dept of Organic Chem & Biochem Alarich-Weiss-Str. 4 D-64287 Darmstadt Germany

tel: +49 6151 1623640 fax: +49 6151 1623645

net: fessner@tu-darmstadt.de

web: http://www.chemie.tu-darmstadt.de/fessner/

